Synthesis 2020; 52(13): 1903-1914
DOI: 10.1055/s-0039-1690091
paper
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalysed Allylboration of Aldehydes

Francesca M. Dennis
,
Craig C. Robertson
,
Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, UK   Email: b.m.partridge@sheffield.ac.uk
› Author Affiliations
This work was supported by the University of Sheffield and the Engineering and Physical Sciences Research Council (EPSRC).
Further Information

Publication History

Received: 13 January 2020

Accepted after revision: 04 March 2020

Publication Date:
18 March 2020 (online)


Abstract

A nickel catalyst for the allylboration of aldehydes is reported, facilitating the preparation of homoallylic alcohols in high diastereoselectivity. The observed diastereoselectivities and NMR experiments suggest that allylation occurs through a well-defined six-membered transition state, with nickel acting as a Lewis acid.

Supporting Information

 
  • References

  • 1 Boronic Acids, Preparation and Applications in Organic Synthesis, Medicine and Materials, Second Completely Revised Edition, Vol. 1. Hall DG. Wiley-VCH; Weinheim: 2011
  • 2 Leonori D, Aggarwal VK. Angew. Chem. Int. Ed. 2015; 54: 1082
  • 3 Diner C, Szabó KJ. J. Am. Chem. Soc. 2017; 139: 2
    • 4a Belhomme M.-C, Wang D, Szabó KJ. Org. Lett. 2016; 18: 2503
    • 4b Unsworth PJ, Löffler LE, Noble A, Aggarwal VK. Synlett 2015; 26: 1567
    • 4c Ding J, Rybak T, Hall DG. Nat. Commun. 2014; 5: 5474
    • 4d Schuster CH, Coombs JR, Kasun ZA, Morken JP. Org. Lett. 2014; 16: 4420
    • 4e Yang Y, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 10642
    • 4f Chausset-Boissarie L, Ghozati K, LaBine E, Chen JL. Y, Aggarwal VK, Crudden CM. Chem. Eur. J. 2013; 19: 17698
    • 4g Farmer JL, Hunter HN, Organ MG. J. Am. Chem. Soc. 2012; 134: 17470
    • 4h Glasspoole BW, Ghozati K, Moir JW, Crudden CM. Chem. Commun. 2012; 48: 1230
    • 4i Brozek LA, Ardolino MJ, Morken JP. J. Am. Chem. Soc. 2011; 133: 16778
    • 4j Waetzig JD, Swift EC, Jarvo ER. Tetrahedron 2009; 65: 3197
    • 4k Shaghafi MB, Kohn BL, Jarvo ER. Org. Lett. 2008; 10: 4743
    • 4l Sebelius S, Olsson VJ, Wallner OA, Szabó KJ. J. Am. Chem. Soc. 2006; 128: 8150
    • 4m Yamamoto Y, Takada S, Miyaura N. Chem. Lett. 2006; 35: 704
    • 4n Solin N, Wallner OA, Szabó KJ. Org. Lett. 2005; 7: 689
    • 5a Chiang P.-F, Li W.-S, Jian J.-H, Kuo T.-S, Wu P.-Y, Wu H.-L. Org. Lett. 2018; 20: 158
    • 5b Hepburn HB, Chotsaeng N, Luo Y, Lam HW. Synthesis 2013; 45: 2649
    • 5c Luo Y, Hepburn HB, Chotsaeng N, Lam HW. Angew. Chem. Int. Ed. 2012; 51: 8309
    • 7a Das A, Wang D, Belhomme M.-C, Szabó KJ. Org. Lett. 2015; 17: 4754
    • 7b Zhao Y.-S, Liu Q, Tian P, Tao J.-C, Lin G.-Q. Org. Biomol. Chem. 2015; 13: 4174
    • 7c Duong HA, Huleatt PB, Tan Q.-W, Shuying EL. Org. Lett. 2013; 15: 4034
    • 7d Vieira EM, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 3332
    • 8a Quan M, Wu L, Yang G, Zhang W. Chem. Commun. 2018; 54: 10394
    • 8b Huang Y, Ma C, Lee YX, Huang R.-Z, Zhao Y. Angew. Chem. Int. Ed. 2015; 54: 13696
    • 9a Jiménez-Aquino A, Ferrer Flegeau E, Schneider U, Kobayashi S. Chem. Commun. 2011; 47: 9456
    • 9b Zhang P, Morken JP. J. Am. Chem. Soc. 2009; 131: 12550
  • 10 For a recent report on Ni-catalysed allylboration using cinnamylboronic acids, see: Tang Q, Fu K, Ruan P, Dong S, Su Z, Liu X, Feng X. Angew. Chem. Int. Ed. 2019; 58: 11846
  • 11 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 12 Grayson JD, Partridge BM. ACS Catal. 2019; 9: 4296

    • For selected reviews on allylboration, see:
    • 13a Jonnalagadda SC, Suman P, Patel A, Jampana G, Colfer A. Allylboration . In Boron Reagents in Synthesis. Coca A. ACS Symposium Series 1236, American Chemical Society; Washington DC: 2016. Chap. 3
    • 13b Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
    • 14a Molander GA, Shubert DC. Tetrahedron Lett. 1986; 27: 787
    • 14b Hegedus LS, Wagner SD, Waterman EL, Siirala-Hansen K. J. Org. Chem. 1975; 40: 593
    • 14c Baker R. Chem. Rev. 1973; 73: 487
  • 16 Weber F, Ballmann M, Kohlmeyer C, Hilt G. Org. Lett. 2016; 18: 548
  • 17 See the Supporting Information for further details.
    • 18a Hoffman RW, Weidmann U. J. Organomet. Chem. 1980; 195: 137
    • 18b Incerti-Pradillos CA, Kabeshov MA, Malkov AV. Angew. Chem. Int. Ed. 2013; 52: 5338
    • 19a Millán A, Smith JR, Chen JL. Y, Aggarwal VK. Angew. Chem. Int. Ed. 2016; 55: 2498
    • 19b Chen JL. Y, Aggarwal VK. Angew. Chem. Int. Ed. 2014; 53: 10992
    • 19c Chen JL.-Y, Scott HK, Hesse MJ, Willis CL, Aggarwal VK. J. Am. Chem. Soc. 2013; 135: 5316
    • 19d Althaus M, Mahmood A, Suárez JR, Thomas SP, Aggarwal VK. J. Am. Chem. Soc. 2010; 132: 4025
    • 19e Peng F, Hall DG. Tetrahedron Lett. 2007; 48: 3305
    • 19f Flamme EM, Roush WR. J. Am. Chem. Soc. 2002; 124: 13644
    • 20a Possémé F, Deligny M, Carreaux F, Carboni B. J. Org. Chem. 2007; 72: 984
    • 20b Lombardo M, Morganti S, Tozzi M, Trombini C. Eur. J. Org. Chem. 2002; 2823
    • 21a Yamamoto E, Takenouchi Y, Ozaki T, Miya T, Ito H. J. Am. Chem. Soc. 2014; 136: 16515
    • 21b Chen M, Roush WR. Org. Lett. 2010; 12: 2706
    • 21c Carosi L, Lachance H, Hall DG. Tetrahedron Lett. 2005; 46: 8981
  • 22 CCDC 1961258 (3f) and CCDC 1973063 (3s) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 23 Roush WR, Adam MA, Walts AE, Harris DJ. J. Am. Chem. Soc. 1986; 108: 3422
  • 24 Mulzer J, Angermann A. Tetrahedron Lett. 1983; 24: 2843
  • 25 Clary JW, Rettenmaier TJ, Snelling R, Bryks W, Banwell J, Wipke WT, Singaram B. J. Org. Chem. 2011; 76: 9602
  • 26 Selander N, Szabó KJ. J. Org. Chem. 2009; 74: 5695
  • 27 Zhang P, Roundtree IA, Morken JP. Org. Lett. 2012; 14: 1416
  • 28 Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2013; 19: 7125
  • 29 Zhang P, Brozek LA, Morken JP. J. Am. Chem. Soc. 2010; 132: 10686
  • 30 Dutheuil G, Selander N, Szabó KJ, Aggarwal VK. Synthesis 2008; 2293
  • 31 Bose SK, Brand S, Omoregie HO, Haehnel M, Maier J, Bringmann G, Marder TB. ACS Catal. 2016; 6: 8332
  • 32 Hesse MJ, Essafi S, Watson CG, Harvey JN, Hirst D, Willis CL, Aggarwal VK. Angew. Chem. Int. Ed. 2014; 53: 6145
  • 33 Godeau J, Pintaric C, Olivero S, Duñach E. Electrochim. Acta 2009; 54: 5116
  • 34 Shimizu H, Igarashi T, Miura T, Murakami M. Angew. Chem. Int. Ed. 2011; 50: 11465
  • 35 Shibata I, Yoshimura N, Yabu M, Baba A. Eur. J. Org. Chem. 2001; 3207
  • 36 Onishi Y, Ito T, Yasuda M, Baba A. Eur. J. Org. Chem. 2002; 1578
  • 37 Cheng B.-Q, Zhao S.-W, Song X.-D, Chu X.-Q, Rao W, Loh T.-P, Shen Z.-L. J. Org. Chem. 2019; 84: 5348
  • 38 Zhao L.-M, Wan L.-J, Jin H.-S, Zhang S.-Q. Eur. J. Org. Chem. 2012; 2579
  • 39 Song X.-N, Lu L, Hua S.-K, Chen W.-D, Ren J. Tetrahedron 2014; 70: 7881
  • 40 De Sio V, Massa A, Scettri A. Org. Biomol. Chem. 2010; 8: 3055
  • 41 Tao Z.-L, Li X.-H, Han Z.-Y, Gong L.-Z. J. Am. Chem. Soc. 2015; 137: 4054
  • 42 Liu X.-Y, Cheng B.-Q, Guo Y.-C, Chu X.-Q, Rao W, Loh T.-P, Shen Z.-L. Org. Chem. Front. 2019; 6: 1581
  • 43 Coxon JM, van Eyk SJ, Steel PJ. Tetrahedron 1989; 45: 1029
  • 44 Zhu S.-F, Yang Y, Wang L.-X, Liu B, Zhou Q.-L. Org. Lett. 2005; 7: 2333
  • 45 Gualandi A, Rodeghiero G, Faraone A, Patuzzo F, Marchini M, Calogero F, Perciaccante R, Jansen TP, Ceroni P, Cozzi PG. Chem. Commun. 2019; 55: 6838
  • 46 Vogt M, Ceylan S, Kirschning A. Tetrahedron 2010; 66: 6450