Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(13): 1541-1545
DOI: 10.1055/s-0039-1690108
DOI: 10.1055/s-0039-1690108
letter
Enantioselective Synthesis of 1-Substituted 1,2,3,4-Tetrahydroisoquinolines through 1,3-Dipolar Cycloaddition by a Chiral Phosphoric Acid
Grant-in-Aid for Scientific Research on Innovative Areas ‘Advanced Transformation Organocatalysis’ from MEXT, Japan, and JSPS KAKENHI Grant number 17H03060.Further Information
Publication History
Received: 20 May 2019
Accepted after revision: 18 June 2019
Publication Date:
27 June 2019 (online)
![](https://www.thieme-connect.de/media/synlett/201913/lookinside/thumbnails/st-2019-u0278-l_10-1055_s-0039-1690108-1.jpg)
Abstract
A new approach is described for the asymmetric synthesis of 1-substituted 1,2,3,4-tetrahydroisoquinolines that is based on the enantioselective 1,3-dipolar cycloaddition reaction of a nitrone and a vinyl ether in the presence of a chiral phosphoric acid that gives the chiral tetrahydroisoquinolines in high yields and with high enantioselectivities. 1H and 31P NMR analyses of the mixture of nitrone and chiral phosphoric acid suggest the formation of a 1:1 complex.
Key words
phosphoric acids - asymmetric synthesis - 1,3-dipolar cycloaddition - nitrones - vinyl ethers - tetrahydroisoquinolinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690108.
- Supporting Information
-
References and Notes
- 1a Herbert RB. In The Chemistry and Biology of Isoquinoline Alkaloids . Philipson JD, Roberts MF, Zenk MH. Springer; Berlin: 1985: 213
- 1b Bentley KW. Nat. Prod. Rep. 1998; 341
- 2a Liu W, Liu S, Jin R, Guo H, Zhao J. Org. Chem. Front. 2015; 2: 288
- 2b Gualandi A, Mengozzi L, Manoni E, Cozzi PG. Catal. Lett. 2015; 145: 398
- 2c Chrzanowska M, Grajewska A, Rozwadowska MD. Chem. Rev. 2016; 116: 12369
- 3 Jensen KB, Roberson M, Jørgensen KA. J. Org. Chem. 2000; 65: 9080
- 4a Akiyama T, Morita H, Fuchibe K. J. Am. Chem. Soc. 2006; 128: 13070
- 4b Mosey RA, Fisk JS, Friebe TL, Tepe JJ. Org. Lett. 2008; 10: 825
- 4c Terada M, Tanaka H, Sorimachi K. J. Am. Chem. Soc. 2009; 131: 3430
- 4d Lu C, Su X, Floreancig PE. J. Org. Chem. 2013; 78: 9366
- 5 Jiao P, Nakashima D, Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 2411
- 6a Jen WS, Wiener JJ. M, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 9874
- 6b Karlsson S, Högberg H.-E. Eur. J. Org. Chem. 2003; 2782
- 6c Chow SS, Nevalainen M, Evans CA, Johannes CW. Tetrahedron Lett. 2007; 48: 277
- 6d Du W, Liu Y.-K, Yue L, Chen Y.-C. Synlett 2008; 2997
- 6e Weselinski L, Slyk E, Jurczak J. Tetrahedron Lett. 2011; 52: 381
- 6f Weseliński L, Kalinowska E, Jurczak J. Tetrahedron: Asymmetry 2012; 23: 264
- 6g Selim KB, Beauchard A, Lhoste J, Martel A, Laurent MY, Dujardin G. Tetrahedron: Asymmetry 2012; 23: 1670
- 6h Poulsen PH, Vergura S, Monleón A, Jørgensen DK. B, Jørgensen KA. J. Am. Chem. Soc. 2016; 138: 6412
- 7a Viton F, Benardinelli G, Kündig EP. J. Am. Chem. Soc. 2002; 124: 4968
- 7b Carmona D, Lamata MP, Viguri F, Rodríguez R, Oro LA, Lahoz FJ, Balana AI, Tejero T, Merino P. J. Am. Chem. Soc. 2005; 127: 13386
- 7c Carmona D, Lamata MP, Viguri F, Rodríguez R, Fischer T, Lahoz FJ, Dobrinovitch IT, Oro LA. Adv. Synth. Catal. 2007; 349: 1751
- 8 Seerden J.-PG, Boeren MM. M, Scheeren HW. Tetrahedron 1997; 53: 11843
- 9a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 9b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356 For selected reviews, see:
- 9c Akiyama T. Chem. Rev. 2007; 107: 5744
- 9d Terada M. Synthesis 2010; 1929
- 9e Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 9f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
- 9g Merad J, Lalli G, Bernadat G, Maur J, Masson G. Chem. Eur. J. 2018; 24: 3925
- 10 (2S,10bS)-2-tert-Butoxy-1,5,6,10b-tetrahydro-2H-isoxazolo[3,2-a]isoquinoline (4aa); Typical ProcedureUnder a N2 atmosphere, a mixture of nitrone 2a (0.15 mmol), MS 4Å (68 wt%, activated), and chiral phosphoric acid 1d (0.015 mmol, 10 mol%) in mesitylene (0.2 mL) was stirred at r.t. for 5 min. The mixture was then cooled to –10 °C and vinyl ether 3a (0.38 mmol, 2.5 equiv) was added. The mixture was stirred at –10 °C for 3 d. When the reaction was complete (TLC), it was quenched with sat. aq NaHCO3. The resulting mixture was extracted with EtOAc (×3) and the combined organic layer was washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by preparative TLC [hexane–EtOAc–Et3N (100:25:3)] to give a colorless oil; yield: 35 mg [94%, exo/endo = 97:3; 84% ee (exo)]; [α]D 24 +88.8 (c 1.1, CHCl3).HPLC: Daicel Chiralpak IB column (4.6 × 250 mm), hexane–i-PrOH (100:1), 0.75 mL/min, λ = 244 nm; t major = 12.00 min, t minor = 9.9 min. 1H NMR (400 MHz, CDCl3): δ = 7.08–7.20 (m, 4 H), 5.57 (dd, J = 1.2, 5.6 Hz, 1 H), 4.76 (dd, J = 8.0, 8.4 Hz, 1 H), 3.28 (ddd, J = 4.8, 5.6, 10.4 Hz, 1 H), 3.14 (ddd, J = 5.2, 7.6, 12.8 Hz, 1 H), 2.81–2.99 (m, 2 H), 2.53 (ddd, J = 1.6, 6.8, 12.8 Hz, 1 H), 2.43 (ddd, J = 5.6, 8.8, 12.8 Hz, 1 H), 1.28 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 135.9, 133.8, 128.2, 127.5, 126.4 (2 peaks), 96.9, 74.6, 60.4, 49.5, 44.1, 29.0, 27.1.
- 11 Details of solvent screening are summarized in the Supporting Information.
- 12 Chiral phosphoric acids with electron-deficient substituents were also tested; see Supporting Information for details.
- 13 For the variations of the concentration and the addition of molecular sieves, see Supporting Information for details.
- 14 See Supporting Information for details.
For reviews of asymmetric syntheses of 1,2,3,4-tetrahydroisoquinolines, see:
For selected examples of the reaction of vinyl ethers catalyzed by chiral Brønsted acid, see:
For selected examples of enantioselective 1,3-dipolar cycloaddition reactions of nitrones and alkenes with organocatalysts, see:
For selected examples of enantioselective syntheses of chiral 1-substituted 1,2,3,4-tetrahydroisoquinolines by 1,3-dipolar cycloaddition reaction, see:
For seminal papers on chiral phosphoric acid catalysis, see: