Synthesis 2019; 51(24): 4619-4624
DOI: 10.1055/s-0039-1690207
paper
© Georg Thieme Verlag Stuttgart · New York

Regioselective Diboron-Mediated Semireduction of Terminal Allenes

Ashley M. Gates
,
Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA   Email: santosw@vt.edu
› Author Affiliations
We acknowledge financial support by the National Science Foundation (CHE-1414458) and funds to purchase the Inova-400 NMR (CHE-0131124) and Agilent 6220 Accurate Mass TOF LC/MS spectrometers (CHE-0722638).
Further Information

Publication History

Received: 18 August 2019

Accepted after revision: 11 September 2019

Publication Date:
10 October 2019 (online)


Abstract

A method for the regioselective reduction of the terminal double bond of 1,1-disubstituted allenes has been developed. In the presence of a palladium catalyst, tetrahydroxydiboron and stoichiometric water, allene semireduction proceeds in high yield to afford Z-alkenes selectively.

Supporting Information

 
  • References

  • 2 Chen Z, Dong VM. Nature Commun. 2017; 784
  • 3 Nagendrappa G, Srivastava RK, Devaprabhakara D. J. Org. Chem. 1970; 35: 347
    • 4a Okuyama T, Toyoshima K, Fueno T. J. Org. Chem. 1980; 45: 1604
    • 4b Nagendrappa G, Devaprabhakara D. Tetrahedron Lett. 1970; 11: 4243
  • 5 Montury M, Goré J. Tetrahedron Lett. 1980; 21: 51
  • 6 Fleming I, Rowley M, Cuadrado P, González-Nogal AM, Pulido FJ. Tetrahedron 1989; 45: 413
  • 7 Bhagwat MM, Devaprabhakara D. Tetrahedron Lett. 1972; 13: 1391
  • 8 Guo H, Zheng Z, Yu F, Ma S, Holuigue A, Tromp DS, Elsevier CJ, Yu Y. Angew. Chem. Int. Ed. 2006; 45: 4997
  • 9 Adler P, Gomes F, Fadel A, Rabasso N. Eur. J. Org. Chem. 2013; 7546
    • 10a Thorpe SB, Guo X, Santos WL. Chem. Commun. 2011; 47: 424
    • 10b Guo X, Nelson AK, Slebodnick C, Santos WL. ACS Catal. 2015; 5: 2172
    • 10c Pashikanti S, Calderone JA, Nguyen MK, Sibley CD, Santos WL. Org. Lett. 2016; 18: 2443
  • 11 Cummings SP, Le T.-N, Fernandez GE, Quiambao LG, Stokes BJ. J. Am. Chem. Soc. 2016; 138: 6107
  • 12 Ojha DP, Gadde K, Prabhu KR. Org. Lett. 2016; 18: 5062
    • 13a Wei Y, Zhao C, Xuan Q, Song Q. Org. Chem. Front. 2017; 4: 2291
    • 13b Liu S, Zhou Y, Sui Y, Liu H, Zhou H. Org. Chem. Front. 2017; 4: 2175
    • 13c Zhou Y, Zhou H, Liu S, Pi D, Shen G. Tetrahedron 2017; 73: 3898
    • 14a Xia Y.-T, Sun X.-T, Zhang L, Luo K, Wu L. Chem. Eur. J. 2016; 22: 17151
    • 14b Xuan Q, Song Q. Org. Lett. 2016; 18: 4250
  • 15 Du H.-C, Simmons N, Faver JC, Yu Z, Palaniappan M, Riehle K, Matzuk MM. Org. Lett. 2019; 21: 2194
  • 16 Kawai Y, Inaba Y, Tokitoh N. Tetrahedron: Asymmetry 2001; 12: 309
  • 17 Zhu N, Zhao J, Bao H. Chem. Sci. 2017; 8: 2081
  • 18 Hornback JM, Barrows RD. J. Org. Chem. 1982; 47: 4285
  • 19 Silva AR, Polo EC, Martins NC, Correia CR. D. Adv. Synth. Catal. 2018; 360: 346
  • 20 Tanaka S, Watanabe K, Tanaka Y, Hattori T. Org. Lett. 2016; 18: 2576
  • 21 Rong G, Liu D, Lu L, Yan H, Zheng Y, Chen J, Mao J. Tetrahedron 2014; 70: 5033
  • 22 Suzuki K, Kobayashi T, Takenobu N, Hori Y, Hagiwara T. EP 1167372(A1), 2002
  • 23 Barluenga J, Florentino L, Aznar F, Valdés C. Org. Lett. 2011; 13: 510
  • 24 Gärtner D, Welther A, Rad BR, Wolf R, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2014; 53: 3722