Synlett 2019; 30(20): 2216-2232
DOI: 10.1055/s-0039-1690233
account
© Georg Thieme Verlag Stuttgart · New York

Ionic Transfer Reactions with Cyclohexadiene-Based Surrogates

,
J.C.L.W. gratefully acknowledges the Alexander von Humboldt Foundation for a Theodor Heuss fellowship (2018–2019). The research presented herein has been supported by the Deutsche Forschungsgemeinschaft (Grant No. Oe 249/11-1 and Oe 249/18-1) and the Cluster of Excellence Unifying Concepts in Catalysis (Grant No. EXC 314/2). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.
Further Information

Publication History

Received: 20 September 2019

Accepted after revision: 14 October 2019

Publication Date:
06 November 2019 (online)


Abstract

A current research program in our laboratory is devoted to the development of cyclohexa-1,4-diene-based surrogates of difficult-to-handle compounds and their application in metal-free ionic transfer reactions. These investigations grew from our interest in silylium ion chemistry and consequently concentrated initially on surrogates of gaseous and explosive hydrosilanes such as Me3SiH and even monosilane (SiH4). Since then, we have expanded the concept to design surrogates of other species including H2, mineral acids (HI and HBr), and hydrocarbons (isobutane and isobutene). This Account summarizes our discoveries in this area to date, describing the challenges we faced along the way and how we combatted them.

1 Introduction

2 Transfer Hydrofunctionalization: Variation of the Electrofuge

3 Transfer Hydrofunctionalization: Variation of the Nucleofuge

4 Transfer Hydrohalogenation Using a Modified Surrogate

5 Surrogate Synthesis

6 Conclusion

 
  • References and Notes


    • For our contributions to this area in the form of review articles, see:
    • 1a Walker, J. C. L.; Klare, H. F. T.; Oestreich, M.; Nat. Rev. Chem. DOI: 10.1038/s41570-019-0146-7
    • 1b Klare HF. T. ACS Catal. 2017; 7: 6999
    • 1c Stahl T, Klare HF. T, Oestreich M. ACS Catal. 2013; 3: 1578
    • 1d Klare HF. T, Oestreich M. Dalton Trans. 2010; 39: 9176
    • 2a Omann L, Pudasaini B, Irran E, Klare HF. T, Baik M.-H, Oestreich M. Chem. Sci. 2018; 9: 5600
    • 2b Wu Q, Qu Z.-W, Omann L, Irran E, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 9176
    • 2c Wu Q, Irran E, Müller R, Kaupp M, Klare HF. T, Oestreich M. Science 2019; 365: 168
    • 3a Klare HF. T, Bergander K, Oestreich M. Angew. Chem. Int. Ed. 2009; 48: 9077
    • 3b Müther K, Fröhlich R, Mück-Lichtenfeld C, Grimme S, Oestreich M. J. Am. Chem. Soc. 2011; 133: 12442
    • 3c Müther K, Hrobárik P, Hrobáriková V, Kaupp M, Oestreich M. Chem. Eur. J. 2013; 19: 16579
    • 3d Rohde VH. G, Pommerening P, Klare HF. T, Oestreich M. Organometallics 2014; 33: 3618
    • 3e Schmidt RK, Klare HF. T, Fröhlich R, Oestreich M. Chem. Eur. J. 2016; 22: 5376
    • 4a Schmidt RK, Müther K, Mück-Lichtenfeld C, Grimme S, Oestreich M. J. Am. Chem. Soc. 2012; 134: 4421
    • 4b Müther K, Mohr J, Oestreich M. Organometallics 2013; 32: 6643
    • 4c Nödling AR, Müther K, Rohde VH. G, Hilt G, Oestreich M. Organometallics 2014; 33: 302
    • 4d Omann L, Qu Z.-W, Irran E, Klare HF. T, Grimme S, Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 8301
    • 4e Shaykhutdinova P, Oestreich M. Org. Lett. 2018; 20: 7029
    • 4f Wu, Q.; Roy, A.; Irran, E.; Qu, Z.-W.; Grimme, S.; Klare, H. F. T.; Oestreich, M. Angew. Chem. Int. Ed. DOI: 10.1002/anie.201911282.

      For the seminal report, see:
    • 5a Lambert JB, Zhang S, Stern CL, Huffman JC. Science 1993; 260: 1917

    • For the subsequent comments, see:
    • 5b Pauling L. Science 1994; 263: 983
    • 5c Olah GA, Rasul G, Li X.-Y, Buchholz HA, Sandford G, Prakash GK. S. Science 1994; 263: 983
    • 5d Lambert JB, Zhang S. Science 1994; 263: 984
    • 5e Reed CA, Xie Y. Science 1994; 263: 985

      For a review, see:
    • 6a Bähr S, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 52

    • For selected examples of original work, see:
    • 6b Klare HF. T, Oestreich M, Ito J.-I, Nishiyama H, Ohki Y, Tatsumi K. J. Am. Chem. Soc. 2011; 133: 3312
    • 6c Chen Q.-A, Klare HF. T, Oestreich M. J. Am. Chem. Soc. 2016; 138: 7868
  • 7 Simonneau A, Biberger T, Oestreich M. Organometallics 2015; 34: 3927

    • For the seminal description of this approach, see:
    • 8a ref. 5a.

    • For a systematic study of the synthesis of various Me3Si+(arene) complexes, see:
    • 8b Ibad MF, Langer P, Schulz A, Villinger A. J. Am. Chem. Soc. 2011; 133: 21016
  • 9 Simonneau A, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 11905

    • For general reviews of chemistry mediated by B(C6F5)3 and related Lewis acids, see:
    • 10a Lawson JR, Melen RL. Inorg. Chem. 2017; 56: 8627
    • 10b Erker G. Dalton Trans. 2005; 1883
    • 10c Piers WE. Adv. Organomet. Chem. 2004; 52: 1
    • 10d Piers WE, Chivers T. Chem. Soc. Rev. 1997; 26: 345
  • 11 Rubin M, Schwier R, Gevorgyan V. J. Org. Chem. 2002; 67: 1936
  • 12 For an early review of ionic transfer hydrosilylation and its comparison to the corresponding radical transfer hydrosilylation, see: Oestreich M. Angew. Chem. Int. Ed. 2016; 55: 494
  • 13 For a review of early work in ionic transfer processes, see: Keess S, Oestreich M. Chem. Sci. 2017; 8: 4688
  • 14 For an account of related work in the application of cyclohexa-1,4-dienes to radical driven processes, see: Walton JC, Studer A. Acc. Chem. Res. 2005; 38: 794

    • For an overview of hydrosilylation chemistry, see:
    • 15a Troegel D, Stohrer J. Coord. Chem. Rev. 2011; 255: 1440 ; and references therein
    • 15b Ojima I, Li Z, Zhu J. In The Chemistry of Organic Silicon Compounds, Vol. 2. Rappoport Z, Apeloig Y. Wiley; Chichester: 2003: 1687
    • 15c Ojima I. In Organic Silicon Compounds . Patai S, Rappoport Z. Wiley; New York: 1989: 1479

      For the related radical transfer hydrosilylation, see:
    • 16a Amrein S, Timmermann A, Studer A. Org. Lett. 2001; 3: 2357
    • 16b Amrein S, Studer A. Helv. Chim. Acta 2002; 85: 3559
    • 16c Amrein S, Studer A. Chem. Commun. 2002; 1592
  • 17 Keess S, Simonneau A, Oestreich M. Organometallics 2015; 34: 790
  • 18 Bähr S, Oestreich M. Organometallics 2017; 36: 935
  • 19 We were also able to use trimethylsilane surrogate 1 in dehydrogenative alcohol silylation, see: Simonneau A, Friebel J, Oestreich M. Eur. J. Org. Chem. 2014; 2077
    • 20a Parks DJ, Blackwell JM, Piers WE. J. Org. Chem. 2000; 65: 3090
    • 20b Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 5997
    • 20c Sakata K, Fujimoto H. J. Org. Chem. 2013; 78: 12505
    • 20d Houghton AY, Hurmalainen J, Mansikkamäki A, Piers WE, Tuononen HM. Nat. Chem. 2014; 6: 983
    • 20e Oestreich M, Hermeke J, Mohr J. Chem. Soc. Rev. 2015; 44: 2202
  • 21 Sakata K, Fujimoto H. Organometallics 2015; 34: 236
    • 22a Itoh M, Iwata K, Takeuchi R, Kobayashi M. J. Organomet. Chem. 1991; 420: C5
    • 22b Kobayashi M, Itoh M. Chem. Lett. 1996; 25: 1013
    • 22c Itoh M, Iwata K, Kobayashi M. J. Organomet. Chem. 1999; 574: 241
  • 23 For a different approach to developing a monosilane surrogate for hydrosilylation, see: Buslov I, Keller SC, Hu X. Org. Lett. 2016; 18: 1928
  • 24 Simonneau A, Oestreich M. Nat. Chem. 2015; 7: 816
  • 25 Smirnov P, Oestreich M. Organometallics 2016; 35: 2433
    • 26a Yuan W, Smirnov P, Oestreich M. Chem 2018; 4: 1443
    • 26b Yuan W, Orecchia P, Oestreich M. Chem. Eur. J. 2018; 24: 19175

      For reviews of the use of organogermanium compounds, see:
    • 27a Su TA, Li H, Klausen RS, Kim NT, Neupane M, Leighton JL, Seigerwald ML, Venkataraman L, Nuckolls C. Acc. Chem. Res. 2017; 50: 1088
    • 27b Kachian JS, Wong KT, Bent SF. Acc. Chem. Res. 2010; 43: 346
    • 27c Buriak JM. Chem. Rev. 2002; 102: 1271
  • 28 Yorimitsu H, Oshima K. Inorg. Chem. Commun. 2005; 8: 131
  • 29 Keess S, Oestreich M. Org. Lett. 2017; 19: 1898
  • 30 Reed CA, Fackler NL. P, Kim K.-C, Stasko D, Evans DR. J. Am. Chem. Soc. 1999; 121: 6314
  • 31 For an early example of the use of cyclohexa-1,4-diene in iodine-catalyzed transfer hydrogenation, see: Eberhardt MK. Tetrahedron 1967; 23: 3029

    • For previous examples of the use of cyclohexa-1,4-diene in gallium(III)-catalyzed transfer hydrogenation, see:
    • 32a Michelet B, Bour C, Gandon V. Chem. Eur. J. 2014; 20: 14488
    • 32b Michelet B, Collard-Itté J.-R, Thiery G, Guillot R, Bour C, Gandon V. Chem. Commun. 2015; 51: 7401
    • 32c Michelet B, Tang S, Thiery G, Monot J, Li H, Guillot R, Bour C, Gandon V. Org. Chem. Front. 2016; 3: 1603
    • 32d Djurovic, A.; Vayer, M.; Li, Z.; Guillot, R.; Baltaze, J.-P.; Gandon, V.; Bour, C. Org. Lett. 2019, 21, 8132.
  • 33 Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
  • 34 Chatterjee I, Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 1965
  • 35 Lefranc A, Qu Z.-W, Grimme S, Oestreich M. Chem. Eur. J. 2016; 22: 10009
  • 36 Chatterjee I, Oestreich M. Org. Lett. 2016; 18: 2463

    • These intermediates have previously been invoked in B(C6F5)3-catalyzed imine hydrogenation with dihydrogen, see:
    • 37a Chase PA, Jurca T, Stephan DW. Chem. Commun. 2008; 1701
    • 37b Chen D, Klankermayer J. Chem. Commun. 2008; 2130
    • 37c Rokob TA, Hamza A, Stirling A, Pápai I. J. Am. Chem. Soc. 2009; 131: 2029
    • 37d Heiden ZM, Stephan DW. Chem. Commun. 2011; 47: 5729
  • 38 Banerjee S, Vanka K. ACS Catal. 2018; 8: 6163

    • For seminal reports of B(C6F5)3-catalyzed alkene hydrogenation with dihydrogen, see:
    • 39a Greb L, Oña-Burgos P, Schirmer B, Grimme S, Stephan DW, Paradies J. Angew. Chem. Int. Ed. 2012; 51: 10164
    • 39b Hounjet LJ, Bannwarth C, Garon CN, Caputo CB, Grimme S, Stephan DW. Angew. Chem. Int. Ed. 2013; 52: 7492
  • 40 For a review of frustrated Lewis pair catalyzed alkene hydrogenation with dihydrogen, see: Paradies J. Angew. Chem. Int. Ed. 2014; 53: 3552
  • 41 Chatterjee I, Qu Z.-W, Grimme S, Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 12158
  • 42 Yuan W, Orecchia P, Oestreich M. Chem. Commun. 2017; 53: 10390
  • 43 Khan I, Reed-Berendt BG, Melen RL, Morrill LC. Angew. Chem. Int. Ed. 2018; 57: 12356
  • 44 A palladium-catalyzed transfer hydrodeuteration of alkenes using an imine-based hydrogen deuteride surrogate has previously been reported, but proceeded with only 70% isotopic purity, see: Murahashi S.-I, Yano T, Hino K.-I. Tetrahedron Lett. 1975; 4235
  • 45 Walker JC. L, Oestreich M. Org. Lett. 2018; 20: 6411
  • 46 Keess S, Oestreich M. Chem. Eur. J. 2017; 23: 5925

    • For previous isolated examples of transfer hydro-tert-butylation, see:
    • 47a Yeung DW. K, Warkentin J. Can. J. Chem. 1976; 54: 1345
    • 47b Biermann U, Metzger JO. J. Am. Chem. Soc. 2004; 126: 10319
  • 48 For a review of Friedel–Crafts-type alkene alkylation, see: Mayr H. Angew. Chem., Int. Ed. Engl. 1990; 29: 1371

    • Cyclohexa-1,4-dienes bearing formally nucleofugal amide groups have previously been prepared, although as these reactions proceed under radical conditions the products have the opposite regioselectivity to that that would be expected under Lewis acidic conditions. For details, see:
    • 49a Kemper J, Studer A. Angew. Chem. Int. Ed. 2005; 44: 4914
    • 49b Guin J, Mück-Lichtenfeld C, Grimme S, Studer A. J. Am. Chem. Soc. 2007; 129: 4498
    • 49c Guin J, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2008; 47: 779
    • 49d Chou C.-M, Guin J, Mück-Lichtenfeld C, Grimme S, Studer A. Chem. Asian J. 2011; 6: 1197

      For examples, see:
    • 50a Baker MJ, Pringle PG. J. Chem. Soc., Chem. Commun. 1991; 1292
    • 50b Yan M, Xu Q.-Y, Chan AS. C. Tetrahedron: Asymmetry 2000; 11: 845
    • 50c de Greef M, Breit B. Angew. Chem. Int. Ed. 2008; 48: 551
    • 50d Falk A, Göderz A.-L, Schmalz H.-G. Angew. Chem. Int. Ed. 2012; 52: 1576
  • 51 Fang X, Yu P, Morandi B. Science 2016; 351: 832
  • 52 Bhunia A, Bergander K, Studer A. J. Am. Chem. Soc. 2018; 140: 16353
  • 53 Orecchia P, Yuan W, Oestreich M. Angew. Chem. Int. Ed. 2019; 58: 3579
  • 54 Parks DJ, Piers WE, Yap GP. A. Organometallics 1998; 17: 5492
  • 55 Sivaev IB, Bregadze VI. Coord. Chem. Rev. 2014; 270
    • 56a Marynick DS, Throckmorton L, Bacquet R. J. Am. Chem. Soc. 1982; 104: 1
    • 56b Bernsdorf A, Brand H, Hellmann R, Köckerling M, Schulz A, Villinger A, Voss K. J. Am. Chem. Soc. 2009; 131: 8958
  • 57 Recent computations by Dr. Maria Schlangen-Ahl (TU Berlin) indicate, however, that the cyanide complex is favored in all circumstances.

    • Cyclohexa-1,4-dienes bearing formally nucleofugal hydrocarbon groups have previously been prepared and used in a limited number of hydroalkylation reactions, although as these proceed under radical conditions the products have the opposite regioselectivity. For details, see:
    • 58a Binmore G, Walton JC, Cardellini L. J. Chem. Soc., Chem. Commun. 1995; 27
    • 58b Baguley PA, Walton JC. J. Chem. Soc., Perkin Trans. 1 1998; 2073
  • 59 Ménard G, Stephan DW. Angew. Chem. Int. Ed. 2012; 51: 4409
  • 60 Walker JC. L, Oestreich M. Angew. Chem. Int. Ed. 2019; 58: 15386
  • 61 For a recent example of this reaction to access indanes, see: Ramulu BV, Mahendar L, Satyanarayana G. Asian J. Org. Chem. 2016; 5: 207
  • 62 For examples, see ref. 60 and references therein.

    • For previous example of HX surrogates, see:
    • 63a Fang X, Cacherat B, Morandi B. Nat. Chem. 2017; 9: 1105
    • 63b Petrone DA, Franzoni I, Ye J, Rodíguez JF, Poblador-Bahamonde AI, Lautens M. J. Am. Chem. Soc. 2017; 139: 3546
  • 64 Chen W, Walker JC. L, Oestreich M. J. Am. Chem. Soc. 2019; 141: 1135
  • 65 For a recent review, see: Drahl MA, Manpadi M, Williams LJ. Angew. Chem. Int. Ed. 2013; 52: 11222
  • 66 Chen W, Oestreich M. Org. Lett. 2019; 21: 4531
  • 67 Okumura M, Huynh SM. N, Pospech J, Sarlah D. Angew. Chem. Int. Ed. 2016; 55: 15910

    • For an early example, see:
    • 68a Angelaud R, Landais Y. J. Org. Chem. 1996; 61: 5202

    • This process has also been reported in the patent literature, see:
    • 68b Kammel T, Pachaly B, Weidner R, Studer A, Alvarez-Garcia L, Herrera-González A. DE10326577, 2004
    • 69a Roberson CW, Woerpel KA. Org. Lett. 2000; 2: 621

    • For early work on the silylation of 9,10-dihydroanthracene, see:
    • 69b Daney M, Labrande B, Lapouyade R, Bouas-Laurent H. J. Organomet. Chem. 1978; 159: 385
    • 70a Rabideau PW, Marcinow Z. Org. React. 1992; 42: 1
    • 70b Birch AJ. J. Chem. Soc. 1944; 430