Subscribe to RSS
DOI: 10.1055/s-0039-1690334
Room-Temperature, Base-Mediated Selective Synthesis of 2-(Arylamino)ethanols and 2-Aryloxyethanols
Publication History
Received: 22 September 2019
Accepted after revision: 31 October 2019
Publication Date:
18 November 2019 (online)
Abstract
A simple and efficient protocol for base-mediated selective synthesis of 2-(arylamino)ethanols from primary aromatic amines and 2-aryloxyethanols from phenols, promoted by K2CO3 has been achieved under mild conditions. Even in presence of excess alkyl halide, selective mono-N-alkylation has been achieved. Tolerance of a variety of functional groups is demonstrated by 15 examples of selective N-alkylation of aromatic amines and 19 examples of O-alkylation of phenols. The efficacy of the protocol is demonstrated by the formal synthesis of Ticlopidine®, Vildagliptin®, Quetiapine®, and Gemfibrozil®.
#
Key words
selective N-alkylation - 2-(arylamino)ethanols - amines - 2-aryloxyethanols - phenols - K2CO3 promoted - Na2CO3 controlledN-Alkylation of amines is central to the synthesis of synthetic intermediates,[1] fine chemicals,[2] pharmaceuticals,[3] agrochemicals,[4] dyes,[5] rubbers,[6] and polymers.[7] Likewise, O-alkyl phenols are applied in paints, varnishes, printing inks, foaming agents, synthetic resins, and perfumes.[8] Moreover, many important drug molecules have N-alkyl moieties, including Metronidazole®, Fluphenazine®, Quetiapine®, Vildagliptin®, Ticlopidine®, and Ditazole® (Figure [1]).
Under standard conditions, amines commonly undergo over-alkylation,[9] which leads to mixtures of secondary and tertiary amines and quaternary ammonium salts instead of the desired mono-N-alkylation products. Methods for preparing N-alkyl amines include direct N-alkylation of primary amines with alkyl halides,[10] reduction of amides,[11] reductive amination of aldehydes with primary amines in the presence of reducing agents,[12] N-dealkylation of tertiary amines,[13] C–N bond-coupling reactions,[14] and transition-metal-catalyzed direct alkylation of amines with alcohols by the borrowing hydrogen strategy.[3] [15] N-Alkylation of amines can be achieved by using various alkyl sources such as alkyl halides,[16] alcohols,[3,17] dimethyl carbonate,[17f] [18] ethylene glycol,[19] epoxides,[20] 2-chloroethanol,[21] CO2,[22] and ZnEt2.[23] In addition, various inorganic bases have been employed, such as K2CO3,[24] NaHCO3,[25] NaH,[26] CsOH·H2O,[27] and Cs2CO3.[28] In addition methods have been described using ionic liquids[29] and N-sulfonamides[8] [30] with alkyl halides. Recently, N-alkylation of anilines with alcohols has been performed efficiently by using Mn,[31] Ni,[32] and Ru[33] metal catalysts and alkyl halides on silica.[34]
Similarly, O-alkylation of phenols is commonly carried out by Williamson’s ether synthesis[35] and C–O bond-coupling reactions[36] with alkyl halides. For O-alkylation of phenols the alkylating agents include alkyl halides,[37] alcohols,[38] dimethyl carbonate,[39] allylic carboxylates,[40] ethylene carbonate,[41] methyl formate,[35b] 2-chloroethanol,[42] and epoxides.[43] Equally, various inorganic bases have been employed, including NaOH,[44] NaH,[45] K2CO3,[24a] [42] [43b] [46] and Cs2CO3,[47] and ionic liquids have also been used.[48]
Nevertheless, the development of new methodologies for selective mono-N-alkylation and O-alkylation protocols continues to be a major challenge. Therefore, the development of effective methods for such conversions continues to be a focus of attention. In particular, most traditional methods for the synthesis of aryl ethers require harsh conditions, such as strong bases and high temperatures,[35a] [49] and are incompatible with a range of functional groups..
Herein, we report a selective and simple protocol to synthesize 2-(arylamino)ethanols from a range of primary aromatic amines and 2-aryloxyethanols from several phenols with 2-chloroethanol, promoted by K2CO3 in methanol (Table 1 and Schemes 1–2) . The corresponding mono-N-alkylated 2-(phenylamino)ethanol products are isolated with high selectivity (81–96%) and moderate to excellent yields (64–80%). Similarly, O-alkylated 2-phenoxyethanol products can also be synthesized with moderate to excellent yields (60–99%). A wide range of functional groups is tolerated due to the mild reaction conditions for both N- and O-alkylation.
In preliminary reactions, 4-methylaniline (1c) was treated with 2-chloroethanol (2a) in the presence of an organic base (1 equiv) such as triethylamine or N,N-diisopropylethylamine (DIPEA) with methanol as solvent at ambient temperature, when 27–34% yield of the desired mono-N-alkylated product 3c and 35–38% of di-N-alkylated product 4c were isolated (Table [1], entries 1 and 2). By using inorganic bases such as Na2CO3, NaHCO3 and KHCO3, the reactions were unsuccessful, with negligible yields of 3c and 4c being observed (entries 3–5). Other bases, such as K2CO3, Cs2CO3, K3PO4, NaOH, KOH, and NaOMe, were found to be effective, but did not selectively furnish mono-N-alkylated product 3c (entries 6–11). While some selectivity was observed towards mono-N-alkylated product 3c with K2CO3 and, being aware of the relative solubility of K2CO3 in methanol,[50] to control the over-alkylation, the reaction was carried out without any solvent, but satisfactory results were still not observed (entry 12).
a Reaction conditions (0.5 g scale): 1c (4.67 mmol, 1 equiv), 2a (3 equiv), base (1–3 equiv), additives (1–3 equiv), solvent (2.5 mL) at room temperature. All reagent and substrate addition was carried out at room temperature (25 °C).
b Isolated yields.
c Selectivities are given in parentheses.
d 2-Chloroethanol (2a) (1 equiv).
e 2-Chloroethanol (2a) (2 equiv).
f Reaction temperature initially at ambient temperature then increased to 40 °C and then heated to reflux.
After a revaluation of all the trials, it was clear that 1 equivalent of Na2CO3, NaHCO3 and KHCO3 showed low conversions but the selectivity was high; whereas 1 equivalent of K2CO3 promoted the reaction with a 3c/4c selectivity up to 58:42. Hence, the decision was made to use a mixture of 1 equivalent of K2CO3 and 1–3 equivalents of Na2CO3; whereupon, dramatic improvements in both selectivity and conversion were obtained (entries 13–15). Among these conditions, 3 equiv of Na2CO3 was most effective; under these conditions improvements in both selectivity (3c/4c, 84:16) and conversion (91%) were obtained, with 76% isolated yield of desired product 3c and only 15% yield of product 4c (entry 15). To examine the effect of Na2CO3 on this conversion, the reaction was carried out by replacing the Na2CO3 with NaHCO3 and KHCO3; in these cases slight decreases in selectivity and conversion were observed (entries 16 and 17). Changing K2CO3 with triethylamine, Cs2CO3 and K3PO4 led to a decrease in selectivity (entries 18–20).
Subsequently, various solvents such as acetonitrile, acetone, dichloromethane, THF, toluene, 1,4-dioxane, DMF, DMSO and NMP were screened, but none were successful (Table [1], entries 21–29), indicating that methanol is the most efficient solvent for this reaction. To examine the effect of alcoholic solvents on conversion and selectivity, reactions were carried out with ethanol and isopropanol, but decreases in selectivity were observed (entries 30–31). To examine the effect of the concentration of 2-chloroethanol on the reaction, experiments were performed using 1 and 2 equivalent of 2-chloroethanol 2a, whereupon a notable decrease in both selectivity and conversion was observed (entries 32 and 33). At the end of this study, one experiment was performed by varying the temperature from ambient temperature up to 40 °C and then at reflux, but decreased selectivity at the higher temperature was observed (entry 34).
It was therefore concluded that the reaction is efficient and selective for mono-N-alkylation using 1 equiv of 1a, 3 equiv of 2a, 1 equiv of K2CO3, 3 equiv of Na2CO3 and 2.5 mL of methanol at room temperature.
With the optimized conditions established, mono-N-alkylation of a range of aromatic amines with 2a was performed (Table [2]). It was observed that anilines containing electron-donating groups such as Me, and OMe underwent conversion smoothly with excellent selectivity for mono-N-alkylated products with good yields. Electron-withdrawing groups such as NO2 and COOH at ortho- and para-positions did not show any conversion, presumably due to decreased nucleophilicity of the amino group. However, a nitro group at the meta-position gave high selectivity and moderate yield of 3g. For halogen-substituted anilines, better conversions were seen at all ortho, meta and para positions to give 3h–o with an increase in the selectivity for mono-N-alkylated products.
a Reaction conditions: Amine 1 (0.5 g, 1 equiv), 2a (3 equiv), K2CO3 (1 equiv), Na2CO3 (3 equiv), MeOH (2.5 mL, 5 volume), at room temperature stirring for 2–24 h.
b Isolated yields are given.
c Selectivities are given in parentheses.
The strategy was further extended towards O-alkylation of various substituted phenols 5 with 2a to give moderate to excellent yields (Scheme [1,] 6a–s). These reactions also demonstrated similar effects on conversion for substrates with substituents having electron-donating or electron-withdrawing groups and steric hindrance at the ortho, meta and para positions. The conditions were also compatible with a range of functional groups, such as alkyl, methoxy, nitro, halide, ester, and aldehyde.
Finally, to demonstrate the synthetic potential of the developed protocol toward the synthesis of commercially important drugs, the formal synthesis of Ticlopidine®,[51] Vildagliptin®,[52] Quetiapine®,[53] and Gemfibrozil® [54] (Scheme [2]) was explored.
The formal synthesis of these four drug molecules was achieved by using the developed protocol with modifications of the reaction conditions as given in Scheme [2]. The products formed are in good agreement with those obtained by using the previously reported methods and they were obtained in competitive yields.[51] [52] [53] [54] This protocol will help to improve industrial processes that can be applied in the synthesis of such drugs.
In conclusion, a simple method to attain selective mono-N-alkylation of aromatic and aliphatic primary amines with high selectivity and O-alkylation of phenols with excellent conversion, promoted by K2CO3 and controlled by Na2CO3 in methanol at room temperature is presented herein. The mild conditions allow broad functional group tolerance for both amines and phenols. Simple operational and workup procedures make this process applicable for scale-up.
All chemicals were obtained from Sigma–Aldrich, Alfa Aesar, Spectrochem, Avra Synthesis or TCI Europe and used as received without purification. Laboratory grade solvents used for reaction, extraction and column chromatography were purchased from Finar chemicals. The progress of reactions was checked by analytical thin-layer chromatography (TLC Silica gel 60 F254 plates). The plates were visualized first with short-wavelength UV light, followed by staining with iodine.
Melting points were determined with an open capillary tube. GC-MS analyses were recorded with a Shimadzu QP-Ultra 2010 GCMS system with MS detector (EI mode, 70 eV) and Rxi-624Sil MS column (30 m, 0.32 mm ID, 1.80 μm). The major signals are quoted in m/z with the relative intensity in parentheses. Analyses used an injector temperature of 250 °C; ion source temperature of 200 °C, interface temperature of 260 °C and column flow 5 mL min–1 helium, column initial temperature (T 0 ) = 60 °C, hold time (t) = 2 min, ramp = 20 °C min–1, final temperature (T 1) = 240 °C, hold time (t) = 9 to 39 min. LCMS spectra were recorded with a Shimadzu LCMS-8030 system with a triple quadrupole mass spectrometer in electrospray ionization (ESI) mode.
1H and 13C NMR spectra were recorded in CDCl3 or DMSO-d 6 with a Bruker Avance-III 500 MHz spectrometer using TMS as an internal standard. The residual solvent signals were used (CDCl3: δH = 7.16–7.32 ppm, DMSO-d 6: δH = 2.51 ppm). Infrared spectra were recorded with a Shimadzu IR MIRacle 10 with diamond ATR.
#
Synthesis of 2-(Arylamino)ethanols; Typical Procedure
To a mixture of amine 1 (0.5 g, 1 equiv) and 2-chloroethanol 2a (3 equiv) in a round-bottom flask, K2CO3 (1 equiv), Na2CO3 (3 equiv), and MeOH (2.5 mL) were added and the flask was closed with a septum. The mixture was stirred at r.t. and the progress of reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL) then reaction mass was stirred for 5 minutes and extracted with EtOAc or dichloromethane (10 mL). The organic layer was then washed with cold water (10 mL), dried over anhydrous Na2SO4, filtered and concentrated under vacuum to obtain the crude mixture of products and unreacted amine. Pure mono-N-alkylated amine 3, di-N-alkylated amine 4 and unreacted amine 1 were obtained after column chromatography.
#
Synthesis of 2-Aryloxyethanols; Typical Procedure
To a mixture of phenol 5 (0.5 g, 1 equiv) and 2-chloroethanol 2a (3 equiv) in a round-bottom flask, K2CO3 (3 equiv) and MeOH (2.5 mL) were added and the flask was closed with a septum. The mixture was stirred at r.t. and the progress of the reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL) and 1 M aq. KOH (10 mL), then the reaction mass was stirred for 5 minutes and extracted with dichloromethane (10 mL). The organic layer was then washed with 1 M aq. KOH (10 mL), dried over anhydrous Na2SO4 filtered and concentrated under vacuum to obtain the pure product 6 without need for further purification.
#
Formal Synthesis of Ticlopidine® (3p)
To a mixture of amine 1p (0.5 g, 1 equiv) and alkyl chloride 2b (1.2 equiv) in a round-bottom flask, K2CO3 (3 equiv) and MeOH (5 mL) were added and the flask was closed with a septum. The mixture was stirred at r.t. and the progress of reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL) then stirred for 5 minutes and extracted with EtOAc (10 mL). The organic layer was washed with cold water (10 mL), dried over anhydrous Na2SO4, filtered and concentrated under vacuum to obtain the crude product. Column chromatography afforded pure 3p.
#
Formal Synthesis of Vildagliptin® (3q)
To a mixture of amine 1q (0.5 g, 1 equiv) and alkyl chloride (2c) (1.2 equiv) in a round-bottom flask, K2CO3 (1 equiv), Na2CO3 (1 equiv), and MeOH (2.5 mL) were added and the flask was closed with a septum. The mixture was stirred at r.t. and the progress of the reaction was monitored by TLC. After completion, the mixture was diluted with MeOH (10 mL) and filtered. Evaporation of the solvent gave a residue, which was recrystallized from EtOAc/MeOH (1:1) to obtain pure 3q.
#
Formal Synthesis of Quetiapine® (3r)
To a mixture of amine 1r (0.5 g, 1 equiv) and alkyl chloride 2d (2.5 equiv) in a round-bottom flask, K2CO3 (3 equiv), and MeOH (5 mL)/isobutanol (5 mL) were added and the flask was fitted with a condenser. The mixture was stirred at 110 °C and the progress of the reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL), stirred for 5 minutes and extracted with EtOAc (10 mL). The organic layer was washed with cold water (10 mL), dried over anhydrous Na2SO4, filtered and concentrated under vacuum to obtain crude 3r. Column chromatography afforded pure product.
#
Formal Synthesis of Gemfibrozil® (7)
To a mixture of phenol 5f (0.5 g, 1 equiv) and alkyl halide 2e (3 equiv) in a round-bottom flask, K2CO3 (3 equiv) and MeOH (1.5 mL)/isobutanol (1.5 mL) were added and the flask was fitted with a condenser. The mixture was stirred at 110 °C and the progress of reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL) and 1 M aq. KOH (10 mL), stirred for 5 minutes and extracted with dichloromethane (10 mL). The organic extract was washed with 1 M aq. KOH (10 mL), dried over anhydrous Na2SO4, filtered and concentrated under vacuum to obtain a mixture of products 6t and 6u.
In a round-bottom flask the mixture of products 6t and 6u was dissolved in 10 M aq. NaOH solution (10 mL) and toluene (10 mL) was added. The mixture was heated to reflux for 5 h and the progress of the reaction was monitored by TLC. After completion, the mixture was cooled, acidified with dilute HCl, stirred for 1 h and extracted with toluene (10 mL). The organic extract was dried over anhydrous Na2SO4, filtered and concentrated under vacuum to obtain pure 7.
#
2-(Phenylamino)ethanol (3a)
Yield: 0.5367 g (73%); yellow-brown oil; Rf = 0.60 (hexanes/EtOAc, 65:35).
IR (neat): 3341, 3009, 2940, 2870, 1767, 1597, 1504, 1381, 1319, 1242, 1126, 1057, 872, 748, 694, 625, 509 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.17 (dd, J = 8.4, 7.4 Hz, 2 H, HAr), 6.73 (t, J = 7.3 Hz, 1 H, HAr), 6.62 (d, J = 7.7 Hz, 2 H, HAr), 3.74 (t, J = 5.2 Hz, 2 H, O-CH2), 3.26 (br s, 1 H, NH), 3.26 (br s, 1 H, OH), 3.22 (t, J = 5.2 Hz, 2 H, N-CH2).
13C NMR (126 MHz, CDCl3): δ = 148.05, 129.38 (2C), 118.09, 113.44 (2C), 61.07, 46.22.
GCMS (EI, 70 eV): m/z calcd for C8H11NO: 137.18; found: 137.
#
2-(o-Tolylamino)ethanol (3b)
Yield: 0.5290 g (75%); dark-brown oil; Rf = 0.55 (hexanes/EtOAc, 65:35).
IR (neat): 3379, 2932, 2855, 1759, 1512, 1450, 1381, 1319, 1250, 1134, 748, 895, 525 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.16–7.08 (m, 1 H, HAr), 7.06 (d, J = 7.3 Hz, 1 H, HAr), 6.68 (t, J = 7.4 Hz, 1 H, HAr), 6.63 (d, J = 8.0 Hz, 1 H, HAr), 3.82 (t, J = 5.3 Hz, 2 H, O-CH2), 3.30 (t, J = 5.3 Hz, 2 H, O-CH2), 2.88 (br s, 1 H, NH), 2.88 (br s, 1 H, OH), 2.15 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 146.01, 130.29, 127.17, 122.69, 117.59, 110.18, 61.15, 46.06, 17.53.
GCMS (EI, 70 eV): m/z calcd for C9H13NO: 151.21; found: 151.
#
2-(p-Tolylamino)ethanol (3c)
Yield: 0.5365 g (76%); brown solid; mp 33–36 °C; Rf = 0.60 (hexanes/EtOAc, 65:35).
IR (neat): 3364, 2955, 2909, 2847, 1759, 1612, 1512, 1450, 1381, 1296, 1242, 1057, 1018, 980, 941, 918, 810, 718, 694, 617, 540, 463 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.91 (d, J = 8.2 Hz, 2 H, HAr), 6.49 (d, J = 8.4 Hz, 2 H, HAr), 3.68 (t, J = 5.2 Hz, 2 H, O-CH2), 3.15 (t, J = 5.2 Hz, 2 H, N-CH2), 2.91 (br s, 1 H, NH), 2.91 (br s, 1 H, OH), 2.16 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 145.84, 129.84 (2C), 127.31, 113.59 (2C), 61.22, 46.57, 20.44.
GCMS (EI, 70 eV): m/z calcd for C9H13NO: 151.21; found: 151.
#
2-(2,4-Dimethylphenylamino)ethanol (3d)
Yield: 0.5250 g (77%); brown oil; Rf = 0.65 (hexanes/EtOAc, 60:40).
IR (neat): 3310, 2909, 2855, 1759, 1612, 1512, 1443, 1381 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.85 (d, J = 8.1 Hz, 1 H, HAr), 6.82 (s, 1 H, HAr), 6.48 (d, J = 8.1 Hz, 1 H, HAr), 3.75 (t, J = 5.2 Hz, 2 H, O-CH2), 3.22 (t, J = 5.2 Hz, 2 H, N-CH2), 2.59 (br s, 1 H, NH), 2.59 (br s, 1 H, OH), 2.15 (s, 3 H, CH3), 2.06 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 143.66, 131.17, 127.36, 126.88, 122.93, 110.55, 61.20, 46.42, 20.36, 17.47.
GCMS (EI, 70 eV): m/z calcd for C10H15NO: 165.23; found: 165.
#
2-(2-Methoxyphenylamino)ethanol (3e)
Yield: 0.4480 g (66%); dark-brown oil; Rf = 0.40 (hexanes/EtOAc 50:50).
IR (neat): 3418, 2932, 2878, 1759, 1597, 1512, 1450, 1381, 1242, 1134, 1049, 903, 741, 625, 586, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.86 (td, J = 7.7, 1.4 Hz, 1 H, HAr), 6.78 (dd, J = 7.9, 1.2 Hz, 1 H, HAr), 6.70 (td, J = 7.8, 1.5 Hz, 1 H, HAr), 6.65 (dd, J = 7.8, 1.3 Hz, 1 H, HAr), 3.83 (s, 3 H, O-CH3), 3.822 (t, J = 5.3 Hz, 2 H, O-CH2), 3.30 (t, J = 5.3 Hz, 2 H, N-CH2), 3.08 (br s, 1 H, NH), 3.08 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 147.20, 137.93, 121.28, 117.17, 110.38, 109.61, 61.28, 55.44, 46.00.
GCMS (EI, 70 eV): m/z calcd for C9H13NO2: 167.21; found: 167.
#
2-(4-Methoxyphenylamino)ethanol (3f)
Yield: 0.5436 g (80%); dark-brown oil; Rf = 0.50 (hexanes/EtOAc, 40:60).
IR (neat): 3356, 2943, 2832, 2361, 1759, 1508, 1462, 1234, 1180, 1126, 1030, 899, 822, 629, 567, 521 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.81–6.75 (m, 2 H, HAr), 6.65–6.57 (m, 2 H, HAr), 3.76 (t, J = 5.2 Hz, 2 H, N-CH2), 3.74 (s, 3 H, O-CH3), 3.20 (t, J = 5.2 Hz, 2 H, O-CH2), 3.03 (br s, 1 H, OH), 3.03 (br s, 1 H, NH).
13C NMR (126 MHz, CDCl3): δ = 152.53, 142.26, 114.87 (4C), 61.16, 55.82, 47.22.
GCMS (EI, 70 eV): m/z calcd for C9H13NO2: 167.21; found: 167.
#
2-(3-Nitrophenylamino)ethanol (3g)
Yield: 0.4221 g (64%); dark-red solid; mp 46–50 °C; Rf = 0.60 (hexanes/EtOAc, 50:50).
IR (neat): 3395, 2986, 2955, 2932, 2870, 1805, 1767, 1620, 1582, 1520, 1342, 1242, 1165, 1119, 1065, 988, 856, 787, 733, 671, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.60–7.46 (m, 1 H, HAr), 7.38 (d, J = 4.3 Hz, 1 H, HAr), 7.33–7.21 (m, 1 H, HAr), 6.90 (dd, J = 8.2, 2.2 Hz, 1 H, HAr), 4.55 (br s, 1 H, NH), 3.87 (t, J = 4.9 Hz, 2 H, O-CH2), 3.33 (br s, 2 H, N-CH2), 2.45 (br d, J = 54.8 Hz, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 149.29, 149.06, 129.78, 119.20, 112.14, 106.43, 60.86, 45.68.
GCMS (EI, 70 eV): m/z calcd for C8H10N2O3: 182.18; found: 182.
#
2-(2-Chlorophenylamino)ethanol (3h)
Yield: 0.4847 g (72%); yellow oil; Rf = 0.50 (hexanes/EtOAc, 70:30).
IR (neat): 3395, 2994, 2940, 2878, 1759, 1597, 1504, 1458, 1373, 1319, 1242, 1142, 1034, 918, 895, 741, 687, 532 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.28–7.22 (m, 1 H, HAr), 7.12 (td, J = 8.2, 1.5 Hz, 1 H, HAr), 6.71–6.59 (m, 2 H, HAr), 4.57 (br s, 1 H, NH), 3.81 (t, J = 5.3 Hz, 2 H O-CH2), 3.31 (t, J = 5.3 Hz, 2 H N-CH2), 2.45 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 143.96, 129.29, 127.87, 119.60, 117.72, 111.52, 61.03, 45.75.
GCMS (EI, 70 eV): m/z calcd for C8H10ClNO: 171.62; found: 171.
#
2-(3-Chlorophenylamino)ethanol (3i)
Yield: 0.4643 g (69%); dark-brown liquid; Rf = 0.50 (hexanes/EtOAc, 70:30).
IR (neat): 3348, 3341, 2932, 2870, 1767, 1597, 1481, 1404, 1327, 1242, 1057, 988, 934, 841, 764, 687, 586 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.99 (t, J = 8.0 Hz, 1 H, HAr), 6.61 (dd, J = 7.8, 1.4 Hz, 1 H, HAr), 6.53 (t, J = 2.1 Hz, 1 H, HAr), 6.42 (dd, J = 8.2, 2.1 Hz, 1 H, HAr), 3.72 (t, J = 5.2 Hz, 2 H O-CH2), 3.17 (t, J = 5.2 Hz, 2 H, N-CH2), 2.41 (br s, 1 H, NH), 2.41 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 149.29, 135.06, 130.28, 117.67, 112.74, 111.59, 61.03, 45.84.
GCMS (EI, 70 eV): m/z calcd for C8H10ClNO: 171.62; found: 171.
#
2-(4-Chlorophenylamino)ethanol (3j)
Yield: 0.4782 g (71%); off-white solid; mp 72–75 °C; Rf = 0.52 (hexanes/EtOAc, 70:30).
IR (neat): 3186, 2940, 2901, 2855, 1759, 1597, 1497, 1427, 1396, 1312, 1265, 1242, 1119, 1057, 903 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.20–7.06 (m, 2 H, HAr), 6.58–6.52 (m, 2 H, HAr), 3.80 (t, J = 5.2 Hz, 2 H, O-CH2), 3.23 (t, J = 5.2 Hz, 2 H, N-CH2), 2.81 (br s, 1 H, NH), 2.81 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 146.72, 129.13 (2C), 122.43, 114.31 (2C), 61.08, 46.15.
GCMS (EI, 70 eV): m/z calcd for C8H10ClNO; 171.62; found: 171.
#
2-(4-Bromophenylamino)ethanol (3k)
Yield: 0.4648 g (74%); off-white solid; mp 80–84 °C; Rf = 0.60 (hexanes/EtOAc, 60:40).
IR (neat): 3302, 3163, 2932, 2847, 1759, 1589, 1489, 1420, 1389, 1312, 1242, 1119, 1057, 995, 903, 810, 679, 594, 509 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.29–7.07 (m, 2 H, HAr), 6.54–6.37 (m, 2 H, HAr), 3.96 (br s, 1 H, NH), 3.73 (t, J = 5.2 Hz, 2 H, O-CH2), 3.17 (t, J = 5.2 Hz, 2 H, N-CH2), 1.96 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 147.15, 132.00 (2C), 114.78 (2C), 109.45, 61.08, 46.03.
GCMS (EI, 70 eV): m/z calcd for C8H10BrNO: 216.08; found: 216.
#
2-(3-Fluorophenylamino)ethanol (3l)
Yield: 0.5307 g (76%); brown oil; Rf = 0.55 (hexanes/EtOAc, 70:30).
IR (neat): 3379, 2932, 2878, 1759, 1620, 1589, 1497, 1450, 1373, 1335, 1242, 1180, 1150, 1111, 1057, 995, 964, 833, 764, 679, 633, 610, 579, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.99 (dd, J = 15.0, 8.1 Hz, 1 H, HAr), 6.30 (m, 2 H, HAr), 6.22 (dt, J = 11.6, 2.2 Hz, 1 H, HAr), 3.67 (t, J = 5.2 Hz, 2 H, O-CH2), 3.33 (br s, 1 H, OH), 3.33 (br s, 1 H, NH), 3.12 (t, J = 5.2 Hz, 2 H, N-CH2).
13C NMR (126 MHz, CDCl3): δ = 163.04 (d, J = 243.3 Hz), 148.87 (d, J = 10.6 Hz), 129.36 (d, J = 10.3 Hz), 108.06 (d, J = 2.3 Hz), 103.15 (d, J = 22.8 Hz), 98.74 (d, J = 25.3 Hz), 59.84, 44.88.
GCMS (EI, 70 eV): m/z calcd for C8H10FNO: 155.17; found: 155.
#
2-(2,3-Dichlorophenylamino)ethanol (3m)
Yield: 0.5025 g (79%); off-white solid; mp 76–80 °C; Rf = 0.60 (hexanes/EtOAc, 70:30).
IR (neat): 3387, 3341, 3271, 2955, 2878, 2353, 2322, 1759, 1589, 1497, 1450, 1412, 1319, 1250, 1111, 941, 887, 748, 633, 494 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.05 (t, J = 8.1 Hz, 1 H, HAr), 6.80 (dd, J = 8.0, 1.2 Hz, 1 H, HAr), 6.57 (dd, J = 8.3, 0.9 Hz, 1 H, HAr), 4.78 (br s, 1 H, NH), 3.86 (t, J = 5.3 Hz, 2 H, O-CH2), 3.34 (t, J = 5.3 Hz, 2 H, N-CH2), 2.01 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 145.48, 133.00, 127.76, 118.32, 117.57, 109.24, 60.97, 45.85.
GCMS (EI, 70 eV): m/z calcd for C8H9Cl2NO: 206.07; found: 206.
#
2-(4-Bromo-2-methylphenylamino)ethanol (3n)
Yield: 0.4456 g (72%); off-white solid; mp 74–78 °C; Rf = 0.52 (hexanes/EtOAc, 60:40).
IR (neat): 3310, 2916, 2847, 1759, 1597, 1504, 1458, 1396, 1358, 1319, 1273, 1242, 1142, 1088, 1065, 995, 856, 802 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.18 (dd, J = 8.5, 2.2 Hz, 1 H, HAr), 7.15 (d, J = 1.8 Hz, 1 H, HAr), 6.46 (d, J = 8.5 Hz, 1 H, HAr), 3.82 (t, J = 5.2 Hz, 2 H, O-CH2), 3.82 (br s, 1 H, NH), 3.26 (t, J = 5.2 Hz, 2 H, N-CH2), 2.10 (s, 3 H, CH3), 2.10 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 145.12, 132.61, 129.65, 124.79, 111.57, 109.09, 60.98, 45.97, 17.29.
GCMS (EI, 70 eV): m/z calcd for C9H12BrNO: 230.1; found: 230.
#
2-(3-Fluoro-2-methylphenylamino)ethanol (3o)
Yield: 0.4868 g (72%); yellow-brown solid; mp 58–62 °C; Rf = 0.57 (hexanes/EtOAc, 60:40).
IR (neat): 3395, 3302, 3210, 2932, 2893, 2855, 1759, 1620, 1582, 1520, 1450, 1381, 1319, 1288, 1234, 1134, 1049, 934, 887, 864, 756, 694, 640, 617, 579, 501 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.94 (dd, J = 15.0, 8.0 Hz, 1 H, HAr), 6.38 (t, J = 8.8 Hz, 1 H, HAr), 6.31 (d, J = 8.2 Hz, 1 H, HAr), 3.74 (t, J = 5.3 Hz, 2 H, O-CH2), 3.21 (t, J = 5.2 Hz, 2 H, N-CH2), 2.71 (br s, 1 H, OH), 2.71 (br s, 1 H, NH), 1.96 (d, J = 1.3 Hz, 3 H).
13C NMR (126 MHz, CDCl3): δ = 161.50 (d, J = 241.1 Hz), 147.72 (d, J = 7.0 Hz), 127.20 (d, J = 10.7 Hz), 109.16 (d, J = 18.6 Hz), 105.73 (d, J = 2.4 Hz), 104.48 (d, J = 23.85 Hz), 61.04, 46.16, 8.15 (d, J = 6.5 Hz).
GCMS (EI, 70 eV): m/z calcd for C9H12FNO: 169.2; found: 169.
#
2,2′-(Phenylazanediyl)diethanol (4a)
Yield: 0.1451 g (15%); yellow-brown oil; Rf = 0.30 (hexanes/EtOAc, 65:35).
IR (neat): 3287, 2963, 2878, 1767, 1597, 1504, 1358, 1242, 1049, 910, 856, 748, 694, 602, 509 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.25–7.16 (m, 2 H, HAr), 6.70 (t, J = 7.3 Hz, 1 H, HAr), 6.64 (d, J = 8.2 Hz, 2 H, HAr), 4.41 (br s, 2 H, OH), 3.73 (t, J = 4.9 Hz, 4 H, O-CH2), 3.48 (t, J = 4.9 Hz, 4 H, N-CH2).
13C NMR (126 MHz, CDCl3): δ = 147.80, 129.34 (2C), 116.80, 112.48 (2C), 60.64 (2C), 55.34 (2C).
GCMS (EI, 70 eV): m/z calcd for C10H15NO2: 181.23; found: 181.
#
2,2′-(2-Methylphenylazanediyl)diethanol (4b)
Yield: 0.0915 g (10%); yellow oil; Rf = 0.29 (hexanes/EtOAc, 65:35).
IR (neat): 3325, 2940, 2878, 2824, 1759, 1597, 1489, 1443, 1373, 1242, 1157, 1049, 918, 872, 764, 725, 594 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.18 (dd, J = 18.2, 7.7 Hz, 3 H, HAr), 7.05 (dd, J = 10.2, 4.4 Hz, 1 H, HAr), 3.58 (t, J = 5.4 Hz, 4 H, O-CH2), 3.16 (t, J = 5.4 Hz, 4 H, N-CH2), 3.01 (br s, 2 H, OH), 2.35 (s, 3 H).
13C NMR (126 MHz, CDCl3): δ = 149.31, 135.71, 131.38, 126.79, 125.02, 124.17, 60.01 (2C), 56.68 (2C), 18.31.
GCMS (EI, 70 eV): m/z calcd for C11H17NO2: 195.26; found: 195.
#
2,2′-(4-Methylphenylazanediyl)diethanol (4c)
Yield: 0.1365 g (15%); dark-brown oil; Rf = 0.30 (hexanes/EtOAc, 60:40).
IR (neat): 3296, 2916, 2862, 1759, 1612, 1512, 1443, 1350, 1242, 1180, 1042, 910, 856, 802, 710, 610, 571, 509 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.94 (d, J = 8.4 Hz, 2 H, HAr), 6.51 (d, J = 8.6 Hz, 2 H, HAr), 3.88 (br s, 2 H, OH), 3.66 (t, J = 4.9 Hz, 4 H, O-CH2), 3.38 (t, J = 4.9 Hz, 4 H, N-CH2), 2.16 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 145.75, 129.85 (2C), 126.29, 113.01 (2C), 60.70 (2C), 55.53 (2C), 20.20.
GCMS (EI, 70 eV): m/z calcd for C11H17NO2: 195.26; found: 195.
#
2,2′-(2,4-Dimethylphenylazanediyl)diethanol (4d)
Yield: 0.1030 g (12%); yellow oil; Rf = 0.32 (hexanes/EtOAc, 60:40).
IR (neat): 3356, 2940, 2878, 1497, 1443, 1366, 1265, 1196, 1150, 1042, 1150, 1042, 872, 818, 571, 525 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.02 (d, J = 8.0 Hz, 1 H, HAr), 6.94 (s, 1 H, HAr), 6.91 (d, J = 8.1 Hz, 1 H, HAr), 3.50 (t, J = 5.4 Hz, 4 H, O-CH2), 3.06 (t, J = 5.4 Hz, 4 H, N-CH2), 2.81 (br s, 2 H, OH), 2.24 (s, 3 H), 2.20 (s, 3 H).
13C NMR (126 MHz, CDCl3): δ = 146.61, 135.51, 134.67, 132.02, 127.48, 124.15, 60.07 (2C), 56.99 (2C), 20.82, 18.17.
GCMS (EI, 70 eV): m/z calcd for C12H19NO2: 209.28; found: 209.
#
2,2′-(2-Methoxyphenylazanediyl)diethanol (4e)
Yield: 0.1275 g (15%); dark-brown oil; Rf = 0.20 (hexanes/EtOAc, 50:50).
IR (neat): 3372, 2940, 2878, 2839, 1805, 1744, 1589, 1497, 1458, 1373, 1242, 1157, 1049, 910, 856, 748, 594, 532, 494 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.20 (dd, J = 7.8, 1.5 Hz, 1 H, HAr), 7.14 (td, J = 8.1, 1.6 Hz, 1 H, HAr), 6.96 (td, J = 7.6, 1.2 Hz, 1 H, HAr), 6.92 (dd, J = 8.2, 0.9 Hz, 1 H, HAr), 3.86 (s, 3 H, O-CH3), 3.50 (t, J = 5.2 Hz, 4 H, O-CH2), 3.25 (br s, 2 H, OH), 3.20 (t, J = 5.2 Hz, 4 H, N-CH2).
13C NMR (126 MHz, CDCl3): δ = 155.45, 138.15, 125.93, 125.08, 121.58, 111.64, 59.80, 57.31 (2C), 55.55 (2C).
GCMS (EI, 70 eV): m/z calcd for C11H17NO3: 211.26; found: 211.
#
2,2′-(4-Methoxyphenylazanediyl)diethanol (4f)
Yield: 0.0430 g (5%); brown oil; mp 44–48 °C; Rf = 0.22 (hexanes/EtOAc, 40:60).
IR (neat): 3271, 2940, 2909, 2862, 2839, 1759, 1705, 1512, 1443, 1366, 1281, 1242 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.84–6.78 (m, 2 H, HAr), 6.73–6.66 (m, 2 H, HAr), 3.82 (br s, 2 H, OH), 3.74 (s, 3 H, O-CH3), 3.71 (t, J = 5.0 Hz, 4 H, O-CH2), 3.39 (t, J = 5.0 Hz, 4 H, N-CH2).
13C NMR (126 MHz, CDCl3): δ = 152.22, 142.60, 115.57 (2C), 114.88 (2C), 60.51, 55.98, 55.81.
GCMS (EI, 70 eV): m/z calcd for C11H17NO3: 211.26; found: 211.
#
2,2′-(4-Nitrophenylazanediyl)diethanol (4g)
Yield: 0.0414 g (5%); dark-yellow oil; mp 92–94 °C; Rf = 0.30 (hexanes/EtOAc, 50:50).
IR (neat): 3210, 2955, 2893, 2862, 1759, 1620, 1520, 1481, 1373, 1335, 1281, 1234, 1173, 1126, 1080, 1034, 995, 887, 849, 779, 733, 664, 594, 540 cm–1.
1H NMR (500 MHz, DMSO-d 6): δ = 7.47 (s, 1 H, HAr), 7.42–7.34 (m, 2 H, HAr), 7.19–7.09 (m, 1 H, HAr), 4.85 (t, J = 5.2 Hz, 2 H, OH), 3.60 (dd, J = 11.3, 5.7 Hz, 4 H, O-CH2), 3.51 (t, J = 6.1 Hz, 4 H, N-CH2).
13C NMR (126 MHz, DMSO-d 6): δ = 149.49, 149.48, 130.40, 118.06, 109.61, 105.35, 58.34 (2C), 53.51 (2C).
GCMS (EI, 70 eV): m/z calcd for C10H14N2O4: 226.23; found: 226.
#
2,2′-(2-Chlorophenylazanediyl)diethanol (4h)
Yield: 0.0681 g (8%); yellow oil; Rf = 0.25 (hexanes/EtOAc, 70:30).
IR (neat): 3294, 3063, 2932, 2870, 1759, 1636, 1589, 1474, 1373, 1242, 1119, 1049, 910, 864, 756, 671, 579, 525 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.40 (dd, J = 8.0, 1.4 Hz, 1 H, HAr), 7.31 (dd, J = 8.0, 1.6 Hz, 1 H, HAr), 7.25 (td, J = 7.6, 1.5 Hz, 1 H, HAr), 7.10 (td, J = 8.0, 1.7 Hz, 1 H, HAr), 3.59 (t, J = 5.3 Hz, 4 H, O-CH2), 3.27 (t, J = 5.3 Hz, 4 H, N-CH2), 2.92 (br s, 2 H, OH).
13C NMR (126 MHz, CDCl3): δ = 146.95, 132.55, 130.58, 127.89, 126.64, 126.30, 59.93 (2C), 56.72 (2C).
GCMS (EI, 70 eV): m/z calcd for C10H14ClNO2: 215.68; found: 215.
#
2,2′-(3-Chlorophenylazanediyl)diethanol (4i)
Yield: 0.1094 g (13%); white solid; mp 88–93 °C; Rf = 0.25 (hexanes/EtOAc, 70:30).
IR (neat): 3233, 3140, 2631, 2600, 2399, 2222, 2106, 1967, 1913, 1721, 1589, 1489, 1211, 988, 833, 764, 687 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.03 (t, J = 8.2 Hz, 1 H, HAr), 6.60 (dd, J = 7.8, 1.3 Hz, 1 H, HAr), 6.54 (t, J = 2.2 Hz, 1 H, HAr), 6.44 (dd, J = 8.5, 2.3 Hz, 1 H, HAr), 4.19 (br s, 2 H, OH), 3.70 (t, J = 4.8 Hz, 4 H, O-CH2), 3.43 (t, J = 4.9 Hz, 4 H, N-CH2).
13C NMR (126 MHz, CDCl3): δ = 148.92, 135.20, 130.22, 116.67, 112.32, 110.62, 60.55 (2C), 55.30 (2C).
GCMS (EI, 70 eV): m/z calcd for C10H14ClNO2: 215.68; found: 215.
#
2,2′-(4-Chlorophenylazanediyl)diethanol (4j)
Yield: 0.1017 g (12%); off-white solid; mp 95–99 °C; Rf = 0.26 (hexanes/EtOAc, 70:30).
IR (neat): 3264, 2916, 2862, 1775, 1589, 1489, 1358, 1173, 1065, 910, 856, 802, 633, 563, 494 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.19–7.11 (m, 2 H, HAr), 6.62–6.55 (m, 2 H, HAr), 4.05 (br s, 2 H, OH), 3.77 (t, J = 4.9 Hz, 2 H, O-CH2), 3.51 (t, J = 4.9 Hz, 2 H, N-CH2).
13C NMR (126 MHz, CDCl3): δ = 146.42, 129.06 (2C), 121.74, 113.70 (2C), 60.54 (2C), 55.39 (2C).
GCMS (EI, 70 eV): m/z calcd for C10H14ClNO2: 215.68; found: 215.
#
2,2′-(4-Bromophenylazanediyl)diethanol (4k)
Yield: 0.0456 g (6%); off-white solid; mp 88–93 °C; Rf = 0.29 (hexanes/EtOAc, 60:40).
IR (neat): 3271, 2947, 2862, 1759, 1582, 1489, 1358, 1242, 1173, 1103, 1057, 1011, 910, 849, 802, 640, 548, 548, 494 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.30–7.26 (m, 2 H, HAr), 6.53 (d, J = 9.1 Hz, 2 H, HAr), 4.00 (br s, 2 H, OH), 3.77 (t, J = 4.8 Hz, 2 H, O-CH2), 3.50 (t, J = 4.8 Hz, 2 H, N-CH2).
13C NMR (126 MHz, CDCl3): δ = 146.80, 131.95 (2C), 114.16 (2C), 108.78, 60.49 (2C), 55.32 (2C).
GCMS (EI, 70 eV): m/z calcd for C10H14BrNO2: 260.13; found: 260.
#
2,2′-(3-Fluorophenylazanediyl)diethanol (4l)
Yield: 0.1340 g (15%); dark-brown oil; Rf = 0.25 (hexanes/EtOAc, 70:30).
IR (neat): 3256, 2955, 2878, 1759, 1612, 1497, 1358, 1242, 1157, 1057, 849, 756, 610, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.12 (dd, J = 15.5, 8.2 Hz, 1 H, HAr), 6.39 (m, 2 H, HAr), 6.32 (dt, J = 12.9, 2.3 Hz, 1 H, HAr), 4.62 (br s, 2 H, OH), 3.75 (t, J = 4.9 Hz, 4 H, O-CH2), 3.48 (t, J = 4.9 Hz, 4 H, N-CH2).
13C NMR (126 MHz, CDCl3): δ = 150.62 (d, J = 242.6 Hz), 149.55 (d, J = 10.5 Hz), 130.32 (d, J = 10.4 Hz), 107.94 (d, J = 2.0 Hz), 103.12 (d, J = 21.6 Hz), 99.34 (d, J = 26.2 Hz), 60.41 (2C), 55.35 (2C).
GCMS (EI, 70 eV): m/z calcd for C10H14FNO2: 199.22; found: 199.
#
2,2′-(2,3-Dichlorophenylazanediyl)diethanol (4m)
Yield: 0.0235 g (3%); yellow oil; Rf = 0.30 (hexanes/EtOAc, 70:30).
IR (neat): 3302, 2932, 2870, 2708, 2029, 1921, 1759, 1574, 1450, 1242, 1042, 918, 718, 617, 532 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.29–7.26 (dd, J = 8.1, 1.7 Hz, 1 H, HAr), 7.23 (dd, J = 8.1, 1.7 Hz, 1 H, HAr), 7.18 (t, J = 7.9 Hz, 1 H, HAr), 3.60 (t, J = 5.3 Hz, 4 H, O-CH2), 3.29 (t, J = 5.3 Hz, 4 H, N-CH2), 2.79 (br s, 2 H, OH).
13C NMR (126 MHz, CDCl3): δ = 149.01, 134.03, 131.11, 127.57, 126.93, 124.77, 59.98 (2C), 56.25 (2C).
GCMS (EI, 70 eV): m/z calcd for C10H13Cl2NO2: 250.12; found: 250.
#
2,2′-(2-Methyl-4-bromophenylazanediyl)diethanol (4n)
Yield: 0.0889 g (12%); dark-brown oil; Rf = 0.27 (hexanes/EtOAc, 60:40).
IR (neat): 3279, 2940, 2878, 1913, 1759, 1643, 1481, 1242, 1057, 818, 571 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.33 (d, J = 2.1 Hz, 1 H, HAr), 7.27 (dd, J = 8.4, 2.1 Hz, 1 H, HAr), 7.06 (d, J = 8.5 Hz, 1 H, HAr), 3.56 (t, J = 5.3 Hz, 4 H O-CH2), 3.35 (br s, 2 H, OH), 3.11 (t, J = 5.3 Hz, 4 H, N-CH2), 2.30 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 148.60, 138.19, 133.99, 129.69, 125.91, 117.85, 59.83 (2C), 56.52 (2C), 18.12.
GCMS (EI, 70 eV): m/z calcd for C11H16BrNO2: 274.15; found: 274.
#
2,2′-(2-Methyl-4-fluorophenylazanediyl)diethanol (4o)
Yield: 0.0588 g (7%); yellow solid; mp 54–60 °C; Rf = 0.28 (hexanes/EtOAc, 60:40).
IR (neat): 3372, 3310, 2878, 1775, 1582, 1466, 1242, 1049, 787, 718, 633 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.11 (dd, J = 14.9, 7.9 Hz, 1 H, HAr), 6.99 (d, J = 8.0 Hz, 1 H, HAr), 6.82 (t, J = 8.7 Hz, 1 H, HAr), 3.59 (t, J = 5.4 Hz, 4 H, O-CH2), 3.17 (br s, 2 H, OH), 3.17 (t, J = 5.4 Hz, 4 H, N-CH2), 2.25 (d, J = 2.4 Hz, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 162.10 (d, J = 242.5 Hz), 151.15 (d, J = 6.6 Hz), 126.68 (d, J = 10.2 Hz), 122.92 (d, J = 15.9 Hz), 119.38 (d, J = 2.9 Hz), 111.50 (d, J = 23.0 Hz), 60.01 (2C), 56.46 (2C), 9.90 (d, J = 5.2 Hz).
GCMS (EI, 70 eV): m/z calcd for C11H16FNO2: 213.25; found: 213.
#
2-Phenoxyethanol (6a)
Yield: 0.7265 g (99%); colorless oil; Rf = 0.55 (hexanes/EtOAc, 90:10).
IR (neat): 3341, 2924, 1759, 1597, 1489, 1242, 1049, 910, 756, 602, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.26–7.14 (m, 2 H, HAr), 6.88 (t, J = 7.4 Hz, 1 H, HAr), 6.82 (d, J = 7.9 Hz, 2 H, HAr), 3.97 (t, J = 4.6 Hz, 2 H, O-CH2), 3.85 (t, J = 4.6 Hz, 2 H, O-CH2), 2.52 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 158.62, 129.52 (2C), 121.21, 114.59 (2C), 69.14, 61.41.
GC-MS (EI, 70 eV): m/z calcd for C8H10O2: 138.16; found: 138.
#
2-(o-Tolyloxy)ethanol (6b)
Yield: 0.6758 g (96%); pale-yellow liquid; Rf = 0.50 (hexanes/EtOAc, 90:10).
IR (neat): 3302, 2916, 2866, 2361, 1890, 1755, 1655, 1589, 1493, 1454, 1373, 1308, 1242, 1123, 1049, 918, 822, 748, 714, 606 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.14 (t, J = 7.2 Hz, 2 H, HAr), 6.87 (td, J = 7.5, 0.7 Hz, 1 H, HAr), 6.81 (d, J = 8.3 Hz, 1 H, HAr), 4.05 (t, J = 4.6 Hz, 2 H, O-CH2), 3.95 (br t, J = 4.6 Hz, 2 H, O-CH2), 2.44 (br t, J = 5.2 Hz, 1 H, OH), 2.23 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 156.73, 130.85, 126.90, 126.85, 120.89, 111.3, 69.24, 61.62, 16.27.
GC-MS (EI, 70 eV): m/z calcd for C9H12O2: 152.19; found: 152.
#
2-(m-Tolyloxy)ethanol (6c)
Yield: 0.6967 g (99%); colorless liquid; Rf = 0.52 (hexanes/EtOAc 90:10).
IR (neat): 3351, 2916, 2870, 2361, 2338, 1674, 1585, 1489, 1450, 1377, 1261, 1157, 1049, 949, 899, 856, 772, 741, 691 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.08 (t, J = 7.8 Hz, 1 H, HAr), 6.73–6.68 (m, 1 H, HAr), 6.68–6.60 (m, 2 H, HAr), 3.96 (t, J = 4.6 Hz, 2 H, O-CH2), 3.85 (br d, J = 3.9 Hz, 2 H, O-CH2), 2.46 (br s, 1 H, OH), 2.24 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 157.57, 138.54, 128.22, 120.90, 114.36, 110.39, 68.04, 60.38, 20.46.
GC-MS (EI, 70 eV): m/z calcd for C9H12O2: 152.19; found: 152.
#
2-(p-Tolyloxy)ethanol (6d)
Yield: 0.6967 g (99%); colorless liquid; Rf = 0.50 (hexanes/EtOAc, 90:10).
IR (neat): 3337, 2936, 2870, 2361, 2342, 1759, 1690, 1589, 1481, 1447, 1373, 1277, 1246, 1161, 1134, 1061, 1038, 918, 791, 745, 691, 602, 540, 509, 474 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.07 (t, J = 5.4 Hz, 2 H, HAr), 6.84–6.77 (m, 2 H, HAr), 4.03 (t, J = 4.6 Hz, 2 H, O-CH2), 3.92 (t, J = 4.5 Hz, 2 H, O-CH2), 2.53 (br s, 1 H, OH), 2.28 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 156.5, 130.39, 130.00 (2C), 114.47 (2C), 69.34, 61.48, 20.49.
GC-MS (EI, 70 eV): m/z calcd for C9H12O2: 152.19; found: 152.
#
2-(2,4-Dimethylphenoxy)ethanol (6e)
Yield: 0.6596 g (97%); white solid; mp 52–56 °C; Rf = 0.55 (hexanes/EtOAc, 90:10).
IR (neat): 3256, 2940, 2916, 2862, 2361, 2330, 1759, 1609, 1504, 1450, 1377, 1354, 1300, 1250, 1223, 1161, 1134, 1084, 1053, 934, 907, 883, 799, 768, 710, 579, 544 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.98–6.90 (m, 2 H, HAr), 6.71 (d, J = 8.1 Hz, 1 H, HAr), 4.04 (t, J = 4.6 Hz, 2 H, O-CH2), 3.94 (br d, J = 4.0 Hz, 2 H, O-CH2), 2.25 (s, 3 H, CH3), 2.23 (br s, 1 H, OH), 2.20 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 154.61, 131.67, 130.15, 127.06, 126.64, 111.55, 69.59, 61.71, 20.47, 16.18.
GC-MS (EI, 70 eV): m/z calcd for C10H14O2: 166.22; found: 166.
#
2-(2,5-Dimethylphenoxy)ethanol (6f)
Yield: 0.6598 g (97%); yellow liquid; Rf = 0.55 (hexanes/EtOAc, 90:10).
IR (neat): 3352, 2920, 2870, 2361, 1755, 1582, 1508, 1454, 1412, 1254, 1130, 1042, 949, 899, 802, 718, 667, 586 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.00 (d, J = 7.5 Hz, 1 H, HAr), 6.68 (d, J = 7.5 Hz, 1 H, HAr), 6.63 (s, 1 H, HAr), 4.03 (t, J = 4.6 Hz, 2 H, O-CH2), 3.93 (br d, J = 4.2 Hz, 2 H, O-CH2), 2.56 (br s, 1 H, OH), 2.30 (s, 3 H, CH3), 2.18 (s, 3 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 156.62, 136.69, 130.57, 123.67, 121.44, 112.49, 69.37, 61.64, 21.41, 15.84.
GC-MS (EI, 70 eV): m/z calcd for C10H14O2: 166.22; found: 166.
#
2-(4-Methoxyphenoxy)ethanol (6g)
Yield: 0.6707 g (99%); off-white solid; mp 64–70 °C; Rf = 0.45 (hexanes/EtOAc, 85:15).
IR (neat): 3291, 3013, 2928, 2870, 2361, 1751, 1504, 1439, 1377, 1292, 1227, 1088, 1030, 930, 891, 826, 725, 671, 571, 532, 501 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.87–6.80 (m, 4 H, HAr), 4.02 (t, J = 4.6 Hz, 2 H, O-CH2), 3.92 (br dd, J = 8.8, 4.6 Hz, 2 H, O-CH2), 3.76 (s, 3 H, O-CH3), 2.48 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 154.09, 152.78, 115.60 (2C), 114.71 (2C), 69.96, 61.51, 55.73.
GC-MS (EI, 70 eV): m/z calcd for C9H12O3: 168.19; found: 168.
#
2-(3-Nitrophenoxy)ethanol (6h)
Yield: 0.5465 g (83%); white solid; mp 87–91 °C; Rf = 0.30 (hexanes/EtOAc, 90:10).
IR (neat): 3279, 3078, 2936, 2866, 2361, 1763, 1616, 1524, 1450, 1342, 1292, 1242, 1053, 953, 895, 864, 791, 733, 671, 613, 540, 486 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.83 (ddd, J = 8.2, 2.0, 0.7 Hz, 1 H, HAr), 7.74 (t, J = 2.3 Hz, 1 H, HAr), 7.44 (t, J = 8.2 Hz, 1 H, HAr), 7.26 (ddd, J = 8.3, 2.5, 0.6 Hz, 1 H, HAr), 4.17 (t, J = 4.5 Hz, 2 H, O-CH2), 4.03 (br d, J = 3.7 Hz, 2 H, O-CH2), 2.38 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 159.20, 149.13, 130.08, 121.62, 116.10, 108.91, 69.95, 61.10.
GC-MS (EI, 70 eV): m/z calcd for C8H9NO4: 183.16; found: 183.
#
2-(4-Nitrophenoxy)ethanol (6i)
Yield: 0.4409 g (67%); pale-yellow solid; mp 79–83 °C; Rf = 0.27 (hexanes/EtOAc, 90:10).
IR (neat): 3252, 2947, 2361, 1759, 1593, 1501, 1331, 1261, 1173, 1072, 1038, 914, 837, 752, 687, 656, 521 cm–1.
1H NMR (500 MHz, CDCl3): δ = 8.23–8.17 (m, 2 H, HAr), 7.01–6.97 (m, 2 H, HAr), 4.21–4.17 (m, 2 H, O-CH2), 4.06–4.01 (m, 2 H, O-CH2), 2.31 (br s, 1 H).
13C NMR (126 MHz, CDCl3): δ = 163.73, 141.71, 125.97 (2C), 114.54 (2C), 70.01, 61.06.
GC-MS (EI, 70 eV): m/z calcd for C8H9NO4: 183.16; found: 183.
#
2-(2-Chlorophenoxy)ethanol (6j)
Yield: 0.6178 g (92%); brown liquid; Rf = 0.50 (hexanes/EtOAc, 85:15).
IR (neat): 3383, 2920, 2870, 2361, 2330, 1612, 1508, 1454, 1377, 1288, 1238, 1177, 1042, 914, 806, 737, 702, 667, 637, 559, 509 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.35 (dd, J = 7.8, 1.6 Hz, 1 H, HAr), 7.23–7.15 (m, 1 H, HAr), 6.96–6.85 (m, 2 H, HAr), 4.11 (t, J = 4.6 Hz, 2 H, O-CH2), 3.97 (t, J = 4.5 Hz, 2 H, O-CH2), 2.92 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 154.17, 130.32, 127.86, 123.02, 121.92, 113.97, 70.67, 61.18.
GC-MS (EI, 70 eV): m/z calcd for C8H9ClO2: 172.61; found: 172.
#
2-(3-Chlorophenoxy)ethanol (6k)
Yield: 0.6579 g (98%); colorless liquid; Rf = 0.60 (hexanes/EtOAc, 85:15).
IR (neat): 3345, 3314, 2924, 2870, 2361, 2334, 1759, 1597, 1489, 1369, 1285, 1242, 1169, 1088, 1049, 914, 826, 741, 667, 563, 509 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.85 (dd, J = 8.1, 1.7 Hz, 1 H, HAr), 7.59–7.51 (m, 1 H, HAr), 7.11 (dd, J = 8.4, 0.8 Hz, 1 H, HAr), 7.08–7.03 (m, 1 H, HAr), 4.24 (t, J = 4.5 Hz, 2 H, O-CH2), 3.98 (dt, J = 9.3, 4.8 Hz, 2 H, O-CH2), 3.01 (t, J = 6.4 Hz, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 152.28, 139.82, 134.50, 125.79, 120.86, 115.14, 71.33, 60.86.
GC-MS (EI, 70 eV): m/z calcd for C8H9ClO2: 172.61; found: 172.
#
2-(4-Chlorophenoxy)ethanol (6l)
Yield: 0.6044 g (90%); dark-brown liquid; Rf = 0.47 (hexanes/EtOAc, 85:15).
IR (neat): 3526, 3360, 2943, 2874, 2361, 2330, 1921, 1759, 1690, 1643, 1605, 1582, 1520, 1485, 1450, 1350, 1277, 1254, 1165, 1072, 1038, 914, 853, 775, 745, 698, 667, 602, 567, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.26–7.19 (m, 2 H, HAr), 6.87–6.80 (m, 2 H, HAr), 4.04 (t, J = 4.5 Hz, 2 H, O-CH2), 3.95 (dd, J = 9.4, 5.3 Hz, 2 H, O-CH2), 2.30 (t, J = 6.0 Hz, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 157.24, 129.42 (2C), 126.01, 115.84 (2C), 69.53, 61.34.
GC-MS (EI, 70 eV): m/z calcd for C8H9ClO2: 172.61; found: 172.
#
2-(2,4-Dichlorophenoxy)ethanol (6m)
Yield: 0.4129 g (65%); yellow liquid; Rf = 0.47 (hexanes/EtOAc, 85:15).
IR (neat): 3364, 2928, 2874, 2361, 1967, 1751, 1585, 1389, 1246, 1061, 868, 802, 733, 652, 571, 559 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.35 (d, J = 2.5 Hz, 1 H, HAr), 7.16 (dd, J = 8.8, 2.6 Hz, 1 H, HAr), 6.85 (d, J = 8.8 Hz, 1 H, HAr), 4.09 (t, J = 4.5 Hz, 2 H, O-CH2), 3.98 (dd, J = 9.4, 5.1 Hz, 2 H, O-CH2), 2.81 (t, J = 6.1 Hz, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 153.02, 130.00, 127.71, 126.25, 123.70, 114.57, 71.00, 61.10.
GC-MS (EI, 70 eV): m/z calcd for C8H8Cl2O2: 207.05; found: 207.
#
2-(4-Fluorophenoxy)ethanol (6n)
Yield: 0.6683 g (96%); colorless liquid; Rf = 0.50 (hexanes/EtOAc, 90:10).
IR (neat): 3375, 2932, 2874, 2361, 1759, 1504, 1454, 1373, 1296, 1204, 1042, 914, 826, 745, 648, 633, 563, 513 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.04–6.91 (m, 2 H, HAr), 6.89–6.80 (m, 2 H, HAr), 4.03 (t, J = 4.5 Hz, 2 H, O-CH2), 3.94 (br s, 2 H, O-CH2), 2.54 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 157.45 (d, J = 239.0 Hz), 154.75 (d, J = 2.1 Hz), 115.89 (d, J = 23.1 Hz) (2C), 115.59 (d, J = 8.0 Hz) (2C), 69.89, 61.37.
GC-MS (EI, 70 eV): m/z calcd for C8H9FO2: 156.15; found: 156.
#
2-(3-(Trifluoromethyl)phenoxy)ethanol (6o)
Yield: 0.4577 g (72%); colorless liquid; Rf = 0.50 (hexanes/EtOAc, 85:15).
IR (neat): 3345, 3306, 2932, 2878, 2361, 1755, 1674, 1593, 1493, 1450, 1323, 1238, 1169, 1119, 1061, 937, 883, 787, 745, 698, 656, 610, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.38 (t, J = 8.0 Hz, 1 H, HAr), 7.22 (d, J = 7.7 Hz, 1 H, HAr), 7.14 (s, 1 H, HAr), 7.08 (dd, J = 8.3, 2.3 Hz, 1 H, HAr), 4.10 (t, J = 4.5 Hz, 2 H, O-CH2), 3.98 (br dd, J = 9.2, 4.9 Hz, 2 H, O-CH2), 2.55 (br t, J = 5.8 Hz, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 158.76, 131.89 (q, J = 32.4 Hz), 130.08, 123.92 (q, J = 408.2 Hz), 118.01 (d, J = 1.0 Hz), 117.80 (q, J = 3.9 Hz), 111.36 (q, J = 3.8 Hz), 69.52, 61.20.
GC-MS (EI, 70 eV): m/z calcd for C9H9F3O2: 206.16; found: 206.
#
2-(4-(2,4,4-Trimethylpentan-2-yl)phenoxy)ethanol (6p)
Yield: 0.5948 g (98%); pale-yellow liquid; Rf = 0.55 (hexanes/EtOAc, 90:10).
IR (neat): 3325, 2951, 2870, 2361, 2268, 2118, 2064, 2041, 1944, 1883, 1759, 1639, 1609, 1512, 1458, 1366, 1242, 1042, 918, 829, 683, 586, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.28–7.25 (m, 2 H, HAr), 6.87–6.81 (m, 2 H, HAr), 4.06 (t, J = 4.6 Hz, 2 H, O-CH2), 3.94 (br s, 2 H, O-CH2), 2.33 (br s, 1 H, OH), 1.70 (s, 2 H, CH2), 1.34 (s, 6 H, CH3), 0.71 (s, 9 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 156.23, 142.74, 127.16 (2C), 113.75 (2C), 69.12, 61.55, 56.99, 37.98, 32.35, 31.80 (3C), 31.71 (2C).
GC-MS (EI, 70 eV): m/z calcd for C16H26O2: 250.38; found: 250.
#
Methyl 3-(2-Hydroxyethoxy)benzoate (6q)
Yield: 0.6123 g (95%); colorless liquid; Rf = 0.30 (hexanes/EtOAc, 90:10).
IR (neat): 3483, 3406, 3352, 3337, 2943, 2866, 2361, 1717, 1585, 1443, 1277, 1045, 926, 895, 756, 683, 610, 555, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.66–7.64 (m, 1 H, HAr), 7.57 (dd, J = 2.4, 1.6 Hz, 1 H, HAr), 7.34 (t, J = 8.0 Hz, 1 H, HAr), 7.12 (dd, J = 7.9, 3.0 Hz, 1 H, HAr), 4.13 (t, J = 4.6 Hz, 2 H, O-CH2), 3.98 (br dd, J = 9.0, 4.8 Hz, 2 H, O-CH2), 3.91 (s, 3 H, O-CH3), 2.48 (br t, J = 5.7 Hz, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 166.94, 158.62, 131.46, 129.51, 122.39, 119.98, 114.72, 69.44, 61.30, 52.24.
GC-MS (EI, 70 eV): m/z calcd for C10H12O4: 196.2; found: 196.
#
2-(2-Hydroxyethoxy)benzaldehyde (6r)
Yield: 0.4080 g (60%); yellow oil; Rf = 0.30 (hexanes/EtOAc, 90:10).
IR (neat): 3379, 3364, 2932, 2870, 2361, 1759, 1678, 1597, 1454, 1396, 1242, 1161, 1045, 918, 833, 760, 656, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 10.43 (s, 1 H, CHO), 7.80 (dd, J = 7.7, 1.8 Hz, 1 H, HAr), 7.60–7.50 (m, 1 H, HAr), 7.05 (t, J = 7.5 Hz, 1 H, HAr), 7.00 (d, J = 8.4 Hz, 1 H, HAr), 4.20 (t, J = 4.6 Hz, 2 H, O-CH2), 4.03 (t, J = 4.5 Hz, 2 H, O-CH2), 3.13 (br s, 1 H, OH).
13C NMR (126 MHz, CDCl3): δ = 190.24, 160.87, 136.08, 129.71, 125.00, 121.13, 112.94, 70.21, 61.07.
GC-MS (EI, 70 eV): m/z calcd for C9H10O3: 166.17; found: 166.
#
2-(Quinolin-8-yloxy)ethanol (6s)
Yield: 0.6256 g (96%); pale-brown solid; mp 112–116 °C; Rf = 0.40 (hexanes/EtOAc, 40:60).
IR (neat): 3387, 2994, 2855, 1759, 1666, 1574, 1504, 1450, 1373, 1319, 1250, 1119, 1072, 903, 764, 733, 633, 571, 532 cm–1.
1H NMR (500 MHz, CDCl3): δ = 8.82 (dd, J = 4.2, 1.6 Hz, 1 H, HAr), 8.13 (dd, J = 8.3, 1.5 Hz, 1 H, HAr), 7.45 (t, J = 7.9 Hz, 1 H, HAr), 7.41–7.37 (m, 2 H, HAr), 7.07 (d, J = 7.5 Hz, 1 H, HAr), 5.87 (br s, 1 H, OH), 4.26 (t, J = 4.4 Hz, 2 H, O-CH2), 4.11 (t, J = 4.4 Hz, 2 H, O-CH2).
13C NMR (126 MHz, CDCl3): δ = 154.37, 148.67, 139.85, 136.54, 129.49, 127.02, 121.70, 119.89, 109.61, 70.96, 60.83.
GC-MS (EI, 70 eV): m/z calcd for C11H11NO2: 189.21; found: 189.
#
5-(2-Chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (3p)[55]
Yield: 0.9013 g (95%); colorless oil; Rf = 0.70 (hexanes/EtOAc, 85:15).
IR (neat): 3055, 2901, 2770, 2275, 2361, 2060, 1921, 1763, 1674, 1566, 1443, 1358, 1254, 1165, 1107, 1038, 903, 837, 752, 702, 590 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.45 (dd, J = 7.6, 1.6 Hz, 1 H, HAr), 7.27 (dd, J = 7.8, 1.3 Hz, 1 H, HAr), 7.16–7.08 (m, 2 H, HAr), 6.97 (d, J = 5.1 Hz, 1 H, HAr), 6.61 (d, J = 5.1 Hz, 1 H, HAr), 3.73 (s, 2 H, N-CH2), 3.54 (s, 2 H, N-CH2), 2.80 (d, J = 5.0 Hz, 2 H, N-CH2), 2.78–2.74 (m, 2 H, CH2).
13C NMR (126 MHz, CDCl3): δ = 135.06, 133.16, 132.85, 132.35, 129.55, 128.38, 127.13, 125.66, 124.20, 121.56, 57.40, 52.06, 49.68, 24.48.
GCMS (EI, 70 eV): m/z calcd for C14H14ClNS: 263.79; found: 263.
#
(2S)-1-[2-[(3-Hydroxy-1-adamantyl)amino]acetyl]pyrrolidine-2-carbonitrile (3q)[56]
Yield: 0.7075 g (78%); off-white solid; mp 112–116 °C; Rf = 0.50 (EtOAc/MeOH, 90:10).
IR (neat): 3291, 2913, 2847, 2361, 2330, 1755, 1655, 1547, 1512, 1450, 1404, 1354, 1308, 1250, 1188, 1153, 1119, 1034, 964, 910, 826, 791, 671, 637, 602, 552, 513, 463 cm–1.
1H NMR (500 MHz, CDCl3): δ = 4.89–4.75 (m, 1 H, N-CH), 3.70–3.58 (m, 1 H, CH), 3.52–3.38 (m, 3 H, CH, CH2), 2.40–2.12 (m, 8 H, CH2), 1.68–1.49 (m, 12 H, CH2).
13C NMR (126 MHz, CDCl3): δ = 170.60, 170, 47, 118.33, 118.28, 69.45, 53.76, 53.46, 49.92, 49.84, 46.58, 46.53, 46.30, 45.48, 44.34, 44.30, 43.37, 41.26, 41.20, 41.11, 41.04, 35.11, 35.07, 32.28, 30.65, 30.64, 29.88, 25.05, 22.77
LCMS (ESI): m/z [M + H]+ calcd for [C17H25N3O2]+: 304.4; found: 304.
#
2-[2-(4-Benzo[b][1,4]benzothiazepin-6-ylpiperazin-1-yl)ethoxy]ethanol (3r)[57]
Yield: 0.5907 g (91%); pale-yellow viscous liquid; Rf = 0.45 (hexanes/EtOAc, 30:70).
IR (neat): 2913, 2855, 2361, 2338, 1593, 1574, 1555, 1454, 1404, 1369, 1304, 1242, 1146, 1111, 1061, 1011, 949, 883, 833, 741, 691, 667, 617, 590, 505, 463 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.49 (d, J = 7.6 Hz, 1 H, HAr), 7.38 (dd, J = 7.7, 1.3 Hz, 1 H, HAr), 7.32–7.27 (m, 3 H, HAr), 7.17–7.14 (m, 1 H, HAr), 7.07 (dd, J = 8.0, 1.2 Hz, 1 H, HAr), 6.87 (td, J = 7.6, 1.3 Hz, 1 H, HAr), 3.70–3.57 (m, 10 H, N-CH2), 3.57 (br s, 1 H, OH), 2.58 (dt, J = 14.8, 6.5 Hz, 6 H, O-CH2).
13C NMR (126 MHz, CDCl3): δ = 160.68, 148.87, 139.89, 134.06, 132.21, 132.18, 130.85, 129.13, 128.99, 128.33, 128.00, 125.32, 122.86, 72.46, 67.54, 61.84, 57.97, 53.10.
LC-MS (ESI): m/z [M + H]+ calcd for [C21H25N3O2S]+: 384.51; found: 384.
#
Isobutyl 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoate (6t)[54]
Yield: 0.4854 g (83%); colorless liquid; Rf = 0.77 (hexanes/EtOAc, 95:5).
IR (neat): 2955, 2870, 2361, 2330, 1759, 1724, 1612, 1582, 1508, 1470, 1416, 1389, 1312, 1261, 1192, 1130, 1045, 995, 941, 841, 802, 768, 714, 667, 586, 517 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.99 (d, J = 7.5 Hz, 1 H, HAr), 6.65 (d, J = 7.5 Hz, 1 H, HAr), 6.60 (s, 1 H, HAr), 3.92–3.88 (m, 2 H, O-CH2), 3.85 (d, J = 6.5 Hz, 2 H, O-CH2), 2.30 (s, 3 H, CH3), 2.17 (s, 3 H, CH3), 1.93 (dp, J = 13.3, 6.7 Hz, 1 H, CH), 1.73 (s, 4 H, CH2), 1.22 (s, 6 H, CH3), 0.94 (d, J = 6.7 Hz, 6 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 177.83, 156.98, 136.46, 130.31, 123.61, 120.69, 111.93, 70.53, 67.97, 42.21, 37.20, 27.82, 25.24 (3C), 21.43, 19.15 (2C), 15.79.
GC-MS (EI, 70 eV): m/z calcd for C19H30O3: 306.44; found: 306.
#
Methyl 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoate (6u)[58]
Yield: 0.0531 g (9%); colorless liquid; Rf = 0.68 (hexanes/EtOAc, 95:5).
IR (neat): 2947, 2866, 2361, 2334, 1732, 1612, 1585, 1508, 1474, 1389, 1312, 1261, 1196, 1153, 1130, 1045, 991, 941, 849, 802, 772, 714, 671, 586, 544, 505 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.99 (d, J = 7.5 Hz, 1 H, HAr), 6.65 (d, J = 7.5 Hz, 1 H, HAr), 6.60 (s, 1 H, HAr), 3.90 (t, J = 5.5 Hz, 2 H, O-CH2), 3.66 (s, 3 H, O-CH3), 2.30 (s, 3 H, CH3), 2.17 (s, 3 H, CH3), 1.76–1.69 (m, 4 H, CH2), 1.22 (s, 6 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 178.30, 156.93, 136.42, 130.28, 123.55, 120.66, 111.89, 67.83, 51.71, 42.09, 37.11, 25.19, 25.18 (2C), 21.40, 15.75.
GC-MS (EI, 70 eV): m/z calcd for C16H24O3: 264.36; found: 264.
#
5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic Acid (7)[54]
Yield: 0.5463 g (90%); off-white solid; mp 62–65 °C; Rf = 0.50 (EtOAc/ MeOH, 90:10).
IR (neat): 2959, 2916, 2870, 2361, 2342, 1759, 1705, 1612, 1582, 1512, 1474, 1400, 1327, 1269, 1211, 1157, 1126, 1045, 995, 937, 864, 802, 748, 586, 555 cm–1.
1H NMR (500 MHz, CDCl3): δ = 6.99 (d, J = 7.5 Hz, 1 H, HAr), 6.65 (d, J = 7.5 Hz, 1 H, HAr), 6.60 (s, 1 H, HAr), 3.92 (t, J = 6.0 Hz, 2 H, O-CH2), 2.30 (s, 3 H, CH3), 2.17 (s, 3 H, CH3), 1.84–1.71 (m, 4 H, CH2), 1.25 (s, 6 H, CH3).
13C NMR (126 MHz, CDCl3): δ = 184.97, 156.98, 136.48, 130.35, 123.64, 120.75, 111.98, 67.93, 42.03, 36.91, 25.18 (2C), 25.01, 21.45, 15.81.
LC-MS (ESI): m/z [M + H]+ calcd for [C15H22O3]+: 251.33; found: 251.
#
#
Acknowledgment
The authors thank the Baburaoji Gholap Research Center for support. We are also thankful to the ‘Central Instrumental Facility (CIF)’ Savitribai Phule Pune University for analytical support.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690334.
- Supporting Information
-
References
- 1a Lawrence SA. Amines: Synthesis Properties and Applications . Cambridge University Press; Cambridge: 2006
- 1b Patai S. Chemistry of the Amino Group. . Wiley Interscience; New York: 1968
- 1c Simplício AL, Clancy JM, Gilmer JF. Molecules 2008; 13: 519
- 2 Sheldon RA, Van Bekkum H. Fine Chemicals through Heterogeneous Catalysis . John Wiley & Sons; New York: 2008
- 3 Elangovan S, Neumann J, Sortais J.-B, Junge K, Darcel C, Beller M. Nat. Commun. 2016; 7: 12641
- 4 Harrison IR, Kozlik A, McCarthy JF, Palmer BH, Wakerley SB, Watkins TI, Weighton DM. Pestic. Sci. 1973; 4: 901
- 5 Wu L, Burgess K. Org. Lett. 2008; 10: 1779
- 6 Travis AS. The Chemistry of Anilines . Rappoport Z. John Wiley & Sons; New York: 2007: 715
- 7 Seayad A, Ahmed M, Klein H, Jackstell R, Gross T, Beller M. Science 2002; 297: 1676
- 8 Cazorla C, Pfordt É, Duclos M.-C, Métay E, Lemaire M. Green Chem. 2011; 13: 2482
- 9 Kan T, Fukuyama T. Chem. Commun. 2004; 4: 353
- 10 For a review on the direct alkylation of primary amines with alkyl halides, see: Salvatore RN, Yoon CH, Jung KW. Tetrahedron 2001; 57: 7785
- 11a Sorribes I, Junge K, Beller M. J. Am. Chem. Soc. 2014; 136: 14314
- 11b Volkov A, Tinnis F, Adolfsson H. Org. Lett. 2014; 16: 680
- 11c Lampland NL, Hovey M, Mukherjee D, Sadow AD. ACS Catal. 2015; 5: 4219
- 12a Reddy PS, Kanjilal S, Sunitha S, Prasad RB. N. Tetrahedron Lett. 2007; 48: 8807
- 12b Byun E, Hong B, De Castro KA, Lim M, Rhee H. J. Org. Chem. 2007; 72: 9815
- 12c Liao W, Chen Y, Liu Y, Duan H, Petersen JL, Shi X. Chem. Commun. 2009; 42: 6436
- 12d Nador F, Moglie Y, Ciolino A, Pierini A, Dorn V, Yus M, Alonso F, Radivoy G. Tetrahedron Lett. 2012; 53: 3156
- 12e Bogolubsky AV, Moroz YS, Mykhailiuk PK, Panov DM, Pipko SE, Konovets AI, Tolmachev A. ACS Comb. Sci. 2014; 16: 375
- 13a Bhat RG, Ghosh Y, Chandrasekaran S. Tetrahedron Lett. 2004; 45: 7983
- 13b Zhen L, Lin Y, Lianghui L, Bing W, Xuefeng F. Chem. Commun. 2013; 49: 4214
- 14a Surry DA, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
- 14b Cawley MJ, Cloke FG. N, Fitzmaurice RJ, Pearson SE, Scott JS, Caddick S. Org. Biomol. Chem. 2008; 6: 2820
- 14c Zhao X, Liu D, Guo H, Liu Y, Zhang W. J. Am. Chem. Soc. 2011; 133: 19354
- 15a Saidi O, Blacker AJ, Farah MM, Marsden SP, Williams JM. J. Angew. Chem. Int. Ed. 2009; 48: 7375; Angew. Chem. 2009, 121, 7511
- 15b Tsai C.-Y, Sung R, Zhuang B.-R, Sung K. Tetrahedron 2010; 66: 6869
- 15c Cui X, Dai X, Deng Y, Shi F. Chem. Eur. J. 2013; 19: 3665
- 15d Yan T, Feringa BL, Barta K. Nat. Commun. 2014; 5: 5602
- 15e Kolesnikov PN, Yagafarov NZ, Usanov DL, Maleev VI, Chusov D. Org. Lett. 2015; 17: 173
- 16a Bhattacharyya S, Pathak U, Mathur S, Vishnoi S, Jain R. RSC Adv. 2014; 4: 18229
- 16b Gupta M, Paul S, Gupta R. Chin. J. Catal. 2014; 35: 444
- 16c Hayat S, Atta-ur-Rahman, Choudhary MI, Khan KM, Schumann W, Bayer E. Tetrahedron 2001; 57: 9951
- 16d Gawande MB, Deshpande SS, Satam JR, Jayaram RV. Catal. Commun. 2007; 8: 576
- 16e Bar-Haim G, Kol M. Org. Lett. 2004; 6: 3549
- 16f Granchi C, Capecchi A, Del Frate G, Martinelli A, Macchia M, Minutolo F, Tuccinardi T. Molecules 2015; 20: 8772
- 17a Naskar S, Bhattacharjee M. Tetrahedron Lett. 2007; 48: 3367
- 17b Fujita K, Li Z, Ozekib N, Yamaguchi R. Tetrahedron Lett. 2003; 44: 2687
- 17c Kawahara R, Fujita K, Yamaguchi R. Adv. Synth. Catal. 2011; 353: 1161
- 17d Botta M, De Angelis F, Nicoletti R. Synthesis 1977; 722
- 17e Tayade KN, Mishra M, Munusamy K, Somani RS. J. Mol. Catal. A: Chem. 2014; 390: 91
- 17f Nagaraju N, Kuriakose G. New J. Chem. 2003; 27: 765
- 18 Selva M, Tundo P, Perosa A. J. Org. Chem. 2003; 68: 7374
- 19 Llabres-Campaner PJ, Ballesteros-Garrido R, Ballesteros R, Abarca B. Tetrahedron 2017; 73: 5552
- 20a Freifelder M, Stone GR. J. Org. Chem. 1961; 26: 1477
- 20b Azizi N, Saidi MR. Org. Lett. 2005; 7: 3649
- 21a Yin J, Ye G, Wang X. J. Mater. Chem. C 2013; 1: 3794
- 21b Ross WC. J. J. Chem. Soc. 1949; 183
- 21c Chen J, Peng Z, Lu M, Xiong X, Chen Z, Li Q, Cheng Z, Jiang D, Tao L, Hua G. Bioorg. Med. Chem. Lett. 2018; 28: 222
- 21d Campbell D, Dix LR, Rostron P. Dyes Pigm. 1995; 29: 77
- 21e Guo H, Zhuang Y, Cao J, Zhang G. Synth. Commun. 2014; 44: 3368
- 21f Rindfusz RE, Harnack VL. J. Am. Chem. Soc. 1920; 42: 1720
- 22 Li X.-D, Xia S.-M, Chen K.-H, Liu X.-F, Li H.-R, He L.-N. Green Chem. 2018; 20: 4853
- 23 Brielles C, Harnett JJ, Dorisa E. Tetrahedron Lett. 2001; 42: 8301
- 24a Poirot M, De Medina P, Delarue F, Perie J.-J, Klaebe A, Faye J.-C. Bioorg. Med. Chem. 2000; 8: 2007
- 24b Gupta PP, Sharma JN. J. Med. Chem. 1973; 16: 797
- 24c Srivastava SK, Chauhan PM. S, Bhaduri AP. Synth. Commun. 1999; 29: 2085
- 25 Singh CB, Kavala V, Samal AK, Patel BK. Eur. J. Org. Chem. 2007; 1369
- 26 Depreux P, Aichaoui H, Lesieur I. Heterocycles 1993; 36: 1051
- 27a Salvatore RN, Nagle AS, Jung KW. J. Org. Chem. 2002; 67: 674
- 27b Salvatore RN, Nagle AS, Schmidt SE, Jung KW. Org. Lett. 1999; 1: 1893
- 28a Díaz JE, Bisceglia J. Á, Mollo MC, Orelli LR. Tetrahedron Lett. 2011; 52: 1895
- 28b Fink DM. Synlett 2004; 2394
- 28c Castillo J.-C, Orrego-Hernández J, Portilla J. Eur. J. Org. Chem. 2016; 3824
- 29a Monopoli A, Cotugno P, Cortese M, Calvano CD, Ciminale F, Nacci A. Eur. J. Org. Chem. 2012; 3105
- 29b Chiappe C, Piccioli P, Pieraccini D. Green Chem. 2006; 8: 277
- 30 Cardullo F, Donati D, Fusillo V, Merlo G, Paio A, Salaris M, Solinas A, Taddei M. J. Comb. Chem. 2006; 8: 834
- 31 Landge VG, Mondal A, Kumar V, Nandakumar A, Balaraman E. Org. Biomol. Chem. 2018; 16: 8175
- 32 Vellakkaran M, Singh K, Banerjee D. ACS Catal. 2017; 7: 8152
- 33 Ogata O, Nara H, Fujiwhara M, Matsumura K, Kayaki Y. Org. Lett. 2018; 20: 3866
- 34 Basu B, Paul S, Nanda AK. Green Chem. 2009; 11: 1115
- 35a Williamson AW. J. Chem. Soc. 1852; 229
- 35b Fuhrmann E, Talbiersky J. Org. Process Res. Dev. 2005; 9: 206
- 35c Mandal S, Mandal S, Ghosh SK, Sar P, Ghosh A, Saha R, Saha B. RSC Adv. 2016; 6: 69605
- 36 Sueki S, Kuninobu Y. Org. Lett. 2013; 15: 1544
- 37a Ando T, Yamawaki J, Kawate T, Sumi S, Hanafusa T. Bull. Chem. Soc. Jpn. 1982; 55: 2504
- 37b Xu W, Mohan R, Morrissey MM. Tetrahedron Lett. 1997; 38: 7337
- 37c Huston RC, Guile RL, Chen PS, Headley WN, Warren GW, Baur LS, Mate BO. J. Am. Chem. Soc. 1933; 55: 4639
- 37d Johnstone RA. W, Rose ME. Tetrahedron 1979; 35: 2169
- 37e Keglevich G, Bálint E, Karsai É, Grün A, Bálint M, Greiner I. Tetrahedron Lett. 2008; 49: 5039
- 37f De Zani D, Colombo M. J. Flow Chem. 2012; 2: 5
- 37g Bogdal D, Pielichowski J, Boron A. Synth. Commun. 1998; 28: 3029
- 37h Brieger G, Hachey D, Nestrick T. J. Chem. Eng. Data 1968; 13: 581
- 37i Bu X, Jing H, Wang L, Chang T, Jin L, Liang Y. J. Mol. Catal. A: Chem. 2006; 259: 121
- 38a Cazorla C, Pfordt E, Duclos M.-C, Métay E, Lemaire M. Green Chem. 2011; 13: 2482
- 38b Lindstedt E, Ghosh R, Olofsson B. Org. Lett. 2013; 15: 6070
- 38c Samolada MC, Grigoriadou E, Kiparissides Z, Vasalos IA. J. Catal. 1995; 152: 52
- 39a Basak A, Nayak MK, Chakraborti AK. Tetrahedron Lett. 1998; 39: 4883
- 39b Perosa A, Selva M, Tundo P, Zordan F. Synlett 2000; 272
- 40 Trost BM, Toste FD. J. Am. Chem. Soc. 1998; 120: 815
- 41a Teruo Y, Shigeru I, Yoshiharu I. Bull. Chem. Soc. Jpn. 1973; 46: 553
- 41b Wang S, Dupin L, Noël M, Carroux CJ, Renaud L, Géhin T, Meyer A, Souteyrand E, Vasseur J.-J, Vergoten G, Chevolot Y, Morvan F, Vidal S. Chem. Eur. J. 2016; 22: 11785
- 42 Yamansarova ET, Kukovinets AG, Kukovinets OS, Zainullin RA, Galin FZ, Kunakova RV, Zorin VV, Tolstikov GA. Russ. J. Org. Chem. 2001; 37: 246
- 43a Turgut Y, Aral T, Karakaplan M, Deniz P, Hosgoren H. Synth. Commun. 2010; 40: 3365
- 43b Rastogi SN, Anand N, Gupta PP, Sharma JN. J. Med. Chem. 1973; 16: 797
- 44a Purushothaman S, Prasanna R, Niranjana P, Raghunathan R, Nagaraj S, Rengasamy R. Bioorg. Med. Chem. Lett. 2010; 20: 7288
- 44b Cho WS, Kim SH, Kim DJ, Mun S.-D, Kim R, Go MJ, Park MH, Kim M, Lee J, Kim Y. Polyhedron 2014; 67: 205
- 44c Dong M, Si YQ, Sun SY, Pu XP, Yang ZJ, Zhang LR, Zhang LH, Leung FP, Lam CM. C, Kwong AK. Y, Yue J. Org. Biomol. Chem. 2011; 9: 3246
- 45 Morales P, Gomez-Canas M, Navarro G, Hurst DP, Carrillo-Salinas FJ, Lagartera L, Pazos R, Goya P, Reggio PH, Guaza C, Franco R, Fernandez-Ruiz J, Jagerovic N. J. Med. Chem. 2016; 59: 6753
- 46 Hu Z, Zhang S, Zhou W, Ma X, Xiang G. Bioorg. Med. Chem. Lett. 2017; 27: 1854
- 47 Parrish JP, Sudaresan B, Jung KW. Synth. Commun. 1999; 29: 4423
- 48 More SV, Ardhapure SS, Naik NH, Bhusare SR, Jadhav WN, Pawar RP. Synth. Commun. 2005; 35: 3113
- 49a Dermer OC. Chem. Rev. 1934; 14: 385
- 49b Mazaleyrat J.-P, Wakselman M. J. Org. Chem. 1996; 61: 2695
- 50a Platonov AY, Evdokimov AN, Kurzin AV, Maiyorova HD. J. Chem. Eng. Data 2002; 47: 1175
- 50b Stenger VA. J. Chem. Eng. Data 1996; 41: 1111
- 51a Maffrand JP, Eloy F. Eur. J. Med. Chem. 1974; 9: 483
- 51b Maffrand JP, Eloy F. J. Heterocycl. Chem. 1976; 13: 1347
- 52a Deng Y, Wang A, Tao Z, Chen Y, Pan X, Hu X. Lett. Org. Chem. 2014; 11: 780
- 52b Castaldi M, Baratella M, Menegotto IG, Castaldi G, Giovenzana GB. Tetrahedron Lett. 2017; 58: 3426
- 53 For quetiapine synthesis: Bharathi CH, Prabahar KJ, Prasad CS, Srinivasa Rao M, Trinadhachary GN, Handa VK, Dandala R, Naidu A. Pharmazie 2008; 63: 14
- 54a Nunna R, Jayanna ND, Ramachandran D. Asian J. Chem. 2015; 27: 925
- 54b Madasu SB, Vekariya NA, Velladurai H, Islam A, Sanasi PD, Korupolu RB. Org. Process Res. Dev. 2013; 17: 963
- 55 Aillaud I, Haurena C, Gall EL, Martens T, Ricci G. Molecules 2010; 15: 8144
- 56 Xu X, Guo J, Su Q, Zhong X. Asian J. Chem. 2013; 25: 7557
- 57 Li M, Wang JJ. Org. Lett. 2018; 20: 6490
- 58 McManus JB, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
For ticlopidine synthesis:
For vildagliptin synthesis:
For gemfibrozil synthesis:
-
References
- 1a Lawrence SA. Amines: Synthesis Properties and Applications . Cambridge University Press; Cambridge: 2006
- 1b Patai S. Chemistry of the Amino Group. . Wiley Interscience; New York: 1968
- 1c Simplício AL, Clancy JM, Gilmer JF. Molecules 2008; 13: 519
- 2 Sheldon RA, Van Bekkum H. Fine Chemicals through Heterogeneous Catalysis . John Wiley & Sons; New York: 2008
- 3 Elangovan S, Neumann J, Sortais J.-B, Junge K, Darcel C, Beller M. Nat. Commun. 2016; 7: 12641
- 4 Harrison IR, Kozlik A, McCarthy JF, Palmer BH, Wakerley SB, Watkins TI, Weighton DM. Pestic. Sci. 1973; 4: 901
- 5 Wu L, Burgess K. Org. Lett. 2008; 10: 1779
- 6 Travis AS. The Chemistry of Anilines . Rappoport Z. John Wiley & Sons; New York: 2007: 715
- 7 Seayad A, Ahmed M, Klein H, Jackstell R, Gross T, Beller M. Science 2002; 297: 1676
- 8 Cazorla C, Pfordt É, Duclos M.-C, Métay E, Lemaire M. Green Chem. 2011; 13: 2482
- 9 Kan T, Fukuyama T. Chem. Commun. 2004; 4: 353
- 10 For a review on the direct alkylation of primary amines with alkyl halides, see: Salvatore RN, Yoon CH, Jung KW. Tetrahedron 2001; 57: 7785
- 11a Sorribes I, Junge K, Beller M. J. Am. Chem. Soc. 2014; 136: 14314
- 11b Volkov A, Tinnis F, Adolfsson H. Org. Lett. 2014; 16: 680
- 11c Lampland NL, Hovey M, Mukherjee D, Sadow AD. ACS Catal. 2015; 5: 4219
- 12a Reddy PS, Kanjilal S, Sunitha S, Prasad RB. N. Tetrahedron Lett. 2007; 48: 8807
- 12b Byun E, Hong B, De Castro KA, Lim M, Rhee H. J. Org. Chem. 2007; 72: 9815
- 12c Liao W, Chen Y, Liu Y, Duan H, Petersen JL, Shi X. Chem. Commun. 2009; 42: 6436
- 12d Nador F, Moglie Y, Ciolino A, Pierini A, Dorn V, Yus M, Alonso F, Radivoy G. Tetrahedron Lett. 2012; 53: 3156
- 12e Bogolubsky AV, Moroz YS, Mykhailiuk PK, Panov DM, Pipko SE, Konovets AI, Tolmachev A. ACS Comb. Sci. 2014; 16: 375
- 13a Bhat RG, Ghosh Y, Chandrasekaran S. Tetrahedron Lett. 2004; 45: 7983
- 13b Zhen L, Lin Y, Lianghui L, Bing W, Xuefeng F. Chem. Commun. 2013; 49: 4214
- 14a Surry DA, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
- 14b Cawley MJ, Cloke FG. N, Fitzmaurice RJ, Pearson SE, Scott JS, Caddick S. Org. Biomol. Chem. 2008; 6: 2820
- 14c Zhao X, Liu D, Guo H, Liu Y, Zhang W. J. Am. Chem. Soc. 2011; 133: 19354
- 15a Saidi O, Blacker AJ, Farah MM, Marsden SP, Williams JM. J. Angew. Chem. Int. Ed. 2009; 48: 7375; Angew. Chem. 2009, 121, 7511
- 15b Tsai C.-Y, Sung R, Zhuang B.-R, Sung K. Tetrahedron 2010; 66: 6869
- 15c Cui X, Dai X, Deng Y, Shi F. Chem. Eur. J. 2013; 19: 3665
- 15d Yan T, Feringa BL, Barta K. Nat. Commun. 2014; 5: 5602
- 15e Kolesnikov PN, Yagafarov NZ, Usanov DL, Maleev VI, Chusov D. Org. Lett. 2015; 17: 173
- 16a Bhattacharyya S, Pathak U, Mathur S, Vishnoi S, Jain R. RSC Adv. 2014; 4: 18229
- 16b Gupta M, Paul S, Gupta R. Chin. J. Catal. 2014; 35: 444
- 16c Hayat S, Atta-ur-Rahman, Choudhary MI, Khan KM, Schumann W, Bayer E. Tetrahedron 2001; 57: 9951
- 16d Gawande MB, Deshpande SS, Satam JR, Jayaram RV. Catal. Commun. 2007; 8: 576
- 16e Bar-Haim G, Kol M. Org. Lett. 2004; 6: 3549
- 16f Granchi C, Capecchi A, Del Frate G, Martinelli A, Macchia M, Minutolo F, Tuccinardi T. Molecules 2015; 20: 8772
- 17a Naskar S, Bhattacharjee M. Tetrahedron Lett. 2007; 48: 3367
- 17b Fujita K, Li Z, Ozekib N, Yamaguchi R. Tetrahedron Lett. 2003; 44: 2687
- 17c Kawahara R, Fujita K, Yamaguchi R. Adv. Synth. Catal. 2011; 353: 1161
- 17d Botta M, De Angelis F, Nicoletti R. Synthesis 1977; 722
- 17e Tayade KN, Mishra M, Munusamy K, Somani RS. J. Mol. Catal. A: Chem. 2014; 390: 91
- 17f Nagaraju N, Kuriakose G. New J. Chem. 2003; 27: 765
- 18 Selva M, Tundo P, Perosa A. J. Org. Chem. 2003; 68: 7374
- 19 Llabres-Campaner PJ, Ballesteros-Garrido R, Ballesteros R, Abarca B. Tetrahedron 2017; 73: 5552
- 20a Freifelder M, Stone GR. J. Org. Chem. 1961; 26: 1477
- 20b Azizi N, Saidi MR. Org. Lett. 2005; 7: 3649
- 21a Yin J, Ye G, Wang X. J. Mater. Chem. C 2013; 1: 3794
- 21b Ross WC. J. J. Chem. Soc. 1949; 183
- 21c Chen J, Peng Z, Lu M, Xiong X, Chen Z, Li Q, Cheng Z, Jiang D, Tao L, Hua G. Bioorg. Med. Chem. Lett. 2018; 28: 222
- 21d Campbell D, Dix LR, Rostron P. Dyes Pigm. 1995; 29: 77
- 21e Guo H, Zhuang Y, Cao J, Zhang G. Synth. Commun. 2014; 44: 3368
- 21f Rindfusz RE, Harnack VL. J. Am. Chem. Soc. 1920; 42: 1720
- 22 Li X.-D, Xia S.-M, Chen K.-H, Liu X.-F, Li H.-R, He L.-N. Green Chem. 2018; 20: 4853
- 23 Brielles C, Harnett JJ, Dorisa E. Tetrahedron Lett. 2001; 42: 8301
- 24a Poirot M, De Medina P, Delarue F, Perie J.-J, Klaebe A, Faye J.-C. Bioorg. Med. Chem. 2000; 8: 2007
- 24b Gupta PP, Sharma JN. J. Med. Chem. 1973; 16: 797
- 24c Srivastava SK, Chauhan PM. S, Bhaduri AP. Synth. Commun. 1999; 29: 2085
- 25 Singh CB, Kavala V, Samal AK, Patel BK. Eur. J. Org. Chem. 2007; 1369
- 26 Depreux P, Aichaoui H, Lesieur I. Heterocycles 1993; 36: 1051
- 27a Salvatore RN, Nagle AS, Jung KW. J. Org. Chem. 2002; 67: 674
- 27b Salvatore RN, Nagle AS, Schmidt SE, Jung KW. Org. Lett. 1999; 1: 1893
- 28a Díaz JE, Bisceglia J. Á, Mollo MC, Orelli LR. Tetrahedron Lett. 2011; 52: 1895
- 28b Fink DM. Synlett 2004; 2394
- 28c Castillo J.-C, Orrego-Hernández J, Portilla J. Eur. J. Org. Chem. 2016; 3824
- 29a Monopoli A, Cotugno P, Cortese M, Calvano CD, Ciminale F, Nacci A. Eur. J. Org. Chem. 2012; 3105
- 29b Chiappe C, Piccioli P, Pieraccini D. Green Chem. 2006; 8: 277
- 30 Cardullo F, Donati D, Fusillo V, Merlo G, Paio A, Salaris M, Solinas A, Taddei M. J. Comb. Chem. 2006; 8: 834
- 31 Landge VG, Mondal A, Kumar V, Nandakumar A, Balaraman E. Org. Biomol. Chem. 2018; 16: 8175
- 32 Vellakkaran M, Singh K, Banerjee D. ACS Catal. 2017; 7: 8152
- 33 Ogata O, Nara H, Fujiwhara M, Matsumura K, Kayaki Y. Org. Lett. 2018; 20: 3866
- 34 Basu B, Paul S, Nanda AK. Green Chem. 2009; 11: 1115
- 35a Williamson AW. J. Chem. Soc. 1852; 229
- 35b Fuhrmann E, Talbiersky J. Org. Process Res. Dev. 2005; 9: 206
- 35c Mandal S, Mandal S, Ghosh SK, Sar P, Ghosh A, Saha R, Saha B. RSC Adv. 2016; 6: 69605
- 36 Sueki S, Kuninobu Y. Org. Lett. 2013; 15: 1544
- 37a Ando T, Yamawaki J, Kawate T, Sumi S, Hanafusa T. Bull. Chem. Soc. Jpn. 1982; 55: 2504
- 37b Xu W, Mohan R, Morrissey MM. Tetrahedron Lett. 1997; 38: 7337
- 37c Huston RC, Guile RL, Chen PS, Headley WN, Warren GW, Baur LS, Mate BO. J. Am. Chem. Soc. 1933; 55: 4639
- 37d Johnstone RA. W, Rose ME. Tetrahedron 1979; 35: 2169
- 37e Keglevich G, Bálint E, Karsai É, Grün A, Bálint M, Greiner I. Tetrahedron Lett. 2008; 49: 5039
- 37f De Zani D, Colombo M. J. Flow Chem. 2012; 2: 5
- 37g Bogdal D, Pielichowski J, Boron A. Synth. Commun. 1998; 28: 3029
- 37h Brieger G, Hachey D, Nestrick T. J. Chem. Eng. Data 1968; 13: 581
- 37i Bu X, Jing H, Wang L, Chang T, Jin L, Liang Y. J. Mol. Catal. A: Chem. 2006; 259: 121
- 38a Cazorla C, Pfordt E, Duclos M.-C, Métay E, Lemaire M. Green Chem. 2011; 13: 2482
- 38b Lindstedt E, Ghosh R, Olofsson B. Org. Lett. 2013; 15: 6070
- 38c Samolada MC, Grigoriadou E, Kiparissides Z, Vasalos IA. J. Catal. 1995; 152: 52
- 39a Basak A, Nayak MK, Chakraborti AK. Tetrahedron Lett. 1998; 39: 4883
- 39b Perosa A, Selva M, Tundo P, Zordan F. Synlett 2000; 272
- 40 Trost BM, Toste FD. J. Am. Chem. Soc. 1998; 120: 815
- 41a Teruo Y, Shigeru I, Yoshiharu I. Bull. Chem. Soc. Jpn. 1973; 46: 553
- 41b Wang S, Dupin L, Noël M, Carroux CJ, Renaud L, Géhin T, Meyer A, Souteyrand E, Vasseur J.-J, Vergoten G, Chevolot Y, Morvan F, Vidal S. Chem. Eur. J. 2016; 22: 11785
- 42 Yamansarova ET, Kukovinets AG, Kukovinets OS, Zainullin RA, Galin FZ, Kunakova RV, Zorin VV, Tolstikov GA. Russ. J. Org. Chem. 2001; 37: 246
- 43a Turgut Y, Aral T, Karakaplan M, Deniz P, Hosgoren H. Synth. Commun. 2010; 40: 3365
- 43b Rastogi SN, Anand N, Gupta PP, Sharma JN. J. Med. Chem. 1973; 16: 797
- 44a Purushothaman S, Prasanna R, Niranjana P, Raghunathan R, Nagaraj S, Rengasamy R. Bioorg. Med. Chem. Lett. 2010; 20: 7288
- 44b Cho WS, Kim SH, Kim DJ, Mun S.-D, Kim R, Go MJ, Park MH, Kim M, Lee J, Kim Y. Polyhedron 2014; 67: 205
- 44c Dong M, Si YQ, Sun SY, Pu XP, Yang ZJ, Zhang LR, Zhang LH, Leung FP, Lam CM. C, Kwong AK. Y, Yue J. Org. Biomol. Chem. 2011; 9: 3246
- 45 Morales P, Gomez-Canas M, Navarro G, Hurst DP, Carrillo-Salinas FJ, Lagartera L, Pazos R, Goya P, Reggio PH, Guaza C, Franco R, Fernandez-Ruiz J, Jagerovic N. J. Med. Chem. 2016; 59: 6753
- 46 Hu Z, Zhang S, Zhou W, Ma X, Xiang G. Bioorg. Med. Chem. Lett. 2017; 27: 1854
- 47 Parrish JP, Sudaresan B, Jung KW. Synth. Commun. 1999; 29: 4423
- 48 More SV, Ardhapure SS, Naik NH, Bhusare SR, Jadhav WN, Pawar RP. Synth. Commun. 2005; 35: 3113
- 49a Dermer OC. Chem. Rev. 1934; 14: 385
- 49b Mazaleyrat J.-P, Wakselman M. J. Org. Chem. 1996; 61: 2695
- 50a Platonov AY, Evdokimov AN, Kurzin AV, Maiyorova HD. J. Chem. Eng. Data 2002; 47: 1175
- 50b Stenger VA. J. Chem. Eng. Data 1996; 41: 1111
- 51a Maffrand JP, Eloy F. Eur. J. Med. Chem. 1974; 9: 483
- 51b Maffrand JP, Eloy F. J. Heterocycl. Chem. 1976; 13: 1347
- 52a Deng Y, Wang A, Tao Z, Chen Y, Pan X, Hu X. Lett. Org. Chem. 2014; 11: 780
- 52b Castaldi M, Baratella M, Menegotto IG, Castaldi G, Giovenzana GB. Tetrahedron Lett. 2017; 58: 3426
- 53 For quetiapine synthesis: Bharathi CH, Prabahar KJ, Prasad CS, Srinivasa Rao M, Trinadhachary GN, Handa VK, Dandala R, Naidu A. Pharmazie 2008; 63: 14
- 54a Nunna R, Jayanna ND, Ramachandran D. Asian J. Chem. 2015; 27: 925
- 54b Madasu SB, Vekariya NA, Velladurai H, Islam A, Sanasi PD, Korupolu RB. Org. Process Res. Dev. 2013; 17: 963
- 55 Aillaud I, Haurena C, Gall EL, Martens T, Ricci G. Molecules 2010; 15: 8144
- 56 Xu X, Guo J, Su Q, Zhong X. Asian J. Chem. 2013; 25: 7557
- 57 Li M, Wang JJ. Org. Lett. 2018; 20: 6490
- 58 McManus JB, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
For ticlopidine synthesis:
For vildagliptin synthesis:
For gemfibrozil synthesis: