Subscribe to RSS
DOI: 10.1055/s-0039-1690722
Multiselective Catalytic Asymmetric Reactions Using α-Keto Esters as Pronucleophiles
This work was supported in part by RIKEN’s Strategic Programs and KAKENHI (Grant Numbers JP17H02213, 18K19156 and JP18H04277 in Precisely Designed Catalysts with Customized Scaffolding) from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT).Publication History
Received: 29 August 2019
Accepted after revision: 07 October 2019
Publication Date:
28 October 2019 (online)
In memory of Professor Dieter Enders
Published as part of the ISySyCat2019 Special Issue
Abstract
In the reactions of simple starting materials, precise catalytic control of the stereochemical outcome (enantio- and diastereoselectivity), as well as chemoselectivity and regioselectivity is an efficient approach to increase molecular complexity with minimal use of protecting groups. Here, we introduce our ongoing studies on asymmetric catalytic reactions using α-keto esters as pronucleophiles or formal 1,3-dipolarophiles. Capitalizing on the high tunability of our late transition-metal complexes with a suitable basic counteranion, we have established a range of multiselective catalytic protocols starting from α-keto esters to provide a wide variety of stereochemically complex molecules incorporating adjacent stereocenters.
1 Introduction
2 Catalytic Asymmetric Monofluorination with NSFI
3 Catalytic Asymmetric Michael Reaction with Nitroolefins
4 Catalytic Asymmetric [3+2] Cycloaddition with (E)-Nitrones
5 Catalytic Asymmetric [3+2] Cycloaddition with Nitrile Oxides
6 Summary
-
References and Notes
- 1 For a review on selectivity, see: Trost BM. Science 1983; 219: 245
- 2 For a review on selective catalysis, see: Mahatthananchai J, Dumas AM, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 10954
- 3a Hoffman RW. Synthesis 2006; 3531
- 3b Young IS, Baran PS. Nat. Chem. 2009; 1: 193
- 4 For a review on atom economy, see: Trost BM. Science 1991; 254: 1471
- 5 For a review on step economy, see: Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 6 For a review on redox economy, see: Burns NZ, Baran PS, Hoffman RW. Angew. Chem. Int. Ed. 2009; 48: 2854
- 7 For a review on pot economy, see: Hayashi Y. Chem. Sci. 2016; 7: 866
- 8a Shenvi RA, O’Malley DP, Baran PS. Acc. Chem. Res. 2009; 42: 530
- 8b Afagh NA, Yudin AK. Angew. Chem. Int. Ed. 2010; 49: 262
- 9a Hamashima Y, Hotta D, Sodeoka M. J. Am. Chem. Soc. 2002; 124: 11240
- 9b Hamashima Y, Hotta D, Umebayashi N, Tsuchiya Y, Suzuki T, Sodeoka M. Adv. Synth. Catal. 2005; 347: 1576
- 9c Hayamizu K, Terayama N, Hashizume D, Dodo K, Sodeoka M. Tetrahedron 2015; 71: 6594
- 10a Sodeoka M, Hamashima Y. Chem. Commun. 2009; 5787
- 10b Sodeoka M, Hamashima Y. Pure Appl. Chem. 2008; 80: 763
- 10c Sodeoka M, Hamashima Y. Pure Appl. Chem. 2006; 78: 477
- 10d Hamashima Y, Sodeoka M. Synlett 2006; 1467
- 10e Sodeoka M, Hamashima Y. Bull. Chem. Soc. Jpn. 2005; 78: 941
- 10f Hamashima Y, Sodeoka M. Chem. Rec. 2004; 4: 231
- 11 Braun M. Modern Enolate Chemistry . Wiley-VCH; Weinheim: 2016
- 12a Hamashima Y, Yagi K, Takano H, Tamás L, Sodeoka M. J. Am. Chem. Soc. 2002; 124: 14530
- 12b Hamashima Y, Takano H, Hotta D, Sodeoka M. Org. Lett. 2003; 5: 3225
- 12c Hamashima Y, Suzuki T, Takano H, Shimura H, Tsuchiya Y, Moriya K, Goto T, Sodeoka M. Tetrahedron 2006; 62: 7168
- 12d Suzuki T, Goto T, Hamashima Y, Sodeoka M. J. Org. Chem. 2007; 72: 246
- 13a Hamashima Y, Sasamoto N, Hotta D, Somei H, Umebayashi N, Sodeoka M. Angew. Chem. Int. Ed. 2005; 44: 1525
- 13b Sasamoto N, Dubs C, Hamashima Y, Sodeoka M. J. Am. Chem. Soc. 2006; 128: 14010
- 13c Dubs C, Hamashima Y, Sasamoto N, Seidel TM, Suzuki S, Hashizume D, Sodeoka M. J. Org. Chem. 2008; 73: 5859
- 13d Hamashima Y, Sasamoto N, Umebayashi N, Sodeoka M. Chem. Asian J. 2008; 3: 1443
- 14a Fukuchi I, Hamashima Y, Sodeoka M. Adv. Synth. Catal. 2007; 349: 509
- 14b Umebayashi N, Hamashima Y, Hashizume D, Sodeoka M. Angew. Chem. Int. Ed. 2008; 47: 4196
- 15a Nakamura A, Lectard S, Hashizume D, Hamashima Y, Sodeoka M. J. Am. Chem. Soc. 2010; 132: 4036
- 15b Nakamura A, Lectard S, Shimizu R, Hamashima Y, Sodeoka M. Tetrahedron: Asymmetry 2010; 21: 1682
- 16 Suzuki S, Kitamura Y, Lectard S, Hamashima Y, Sodeoka M. Angew. Chem. Int. Ed. 2012; 51: 4581
- 17 Sohtome Y, Nakamura G, Muranaka A, Hashizume D, Lectard S, Tsuchimoto T, Uchiyama M, Sodeoka M. Nat. Commun. 2017; 8: 14875
- 18 Bartlett SL, Sohtome Y, Hashizume D, White PS, Sawamura M, Johnson JS, Sodeoka M. J. Am. Chem. Soc. 2017; 139: 8661
- 19a Raimondi W, Bonne D, Rodriguez J. Chem. Commun. 2012; 48: 6763
- 19b Raimondi W, Bonne D, Rodriguez J. Angew. Chem. Int. Ed. 2012; 51: 40
- 20a Juhl K, Gathergood N, Jørgensen KA. Chem. Commun. 2000; 2211
- 20b Dambruoso P, Massi A, Dondoni A. Org. Lett. 2005; 7: 4657
- 20c Juhl K, Gathergood N, Jørgensen KA. Angew. Chem. Int. Ed. 2001; 40: 2995
- 20d Juhl K, Jørgensen KA. J. Am. Chem. Soc. 2002; 124: 2420
- 20e Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H. Angew. Chem. Int. Ed. 2004; 43: 1983
- 20f Gathergood N, Juhl K, Poulse TB, Thordrup K, Jørgensen KA. Org. Biomol. Chem. 2004; 2: 1077
- 20g Vincent J.-M, Margottin C, Berlande M, Cavagnat D, Buffeteau T, Landais Y. Chem. Commun. 2007; 4782
- 21a Lu G, Morimoto H, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2008; 47: 6847
- 21b Muthukumar A, Sangeetha S, Sekar G. Org. Biomol. Chem. 2018; 16: 7068 ; other references cited therein
- 22 Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. Nucleic Acids Res. 2019; 47: D590
- 23a Shibasaki M, Kanai M. Chem. Rev. 2008; 108: 2853
- 23b Liu Y.-L, Lin X.-T. Adv. Synth. Catal. 2019; 361: 876
- 24 For a recent review, see: Bartlett SL, Johnson JS. Acc. Chem. Res. 2017; 50: 2284
- 25 Hashimoto K, Shirahama H. Tetrahedron Lett. 1991; 32: 2625
- 26a Lectard S, Hamashima Y, Sodeoka M. Adv. Synth. Catal. 2010; 352: 2708
- 26b Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
- 26c Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA. Coelho J. A. S, Toste FD. Chem. Rev. 2018; 118: 3887
- 27 With phosphonate esters, see: Hamashima Y, Suzuki T, Shimura Y, Shimizu T, Umebayashi N, Tamura T, Sasamoto N, Sodeoka M. Tetrahedron Lett. 2005; 46: 1447
- 28 With oxindoles: Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M. J. Am. Chem. Soc. 2005; 127: 10164
- 29 With α-aryl-α-cyanophosphate esters: Moriya K, Hamashima Y, Sodeoka M. Synlett 2007; 1139
- 30 With N-acyl thiazolinethiones: Suzuki T, Hamashima Y, Sodeoka M. Angew. Chem. Int. Ed. 2007; 46: 5435
- 31a Ourari A, Condom R, Guedi R. Can. J. Chem. 1982; 60: 2707
- 31b Okonya JF, Johnson MC, Hoffman RV. J. Org. Chem. 1998; 63: 6409
- 32 For a recent review on metal-catalyzed asymmetric Michael reaction, see: Zheng, K.; Liu, X.; Feng, X. Chem. Rev. 2018, 118, 7586; and other references cited therein.
- 33 For a recent review on nickel(II)-catalyzed asymmetric conjugate additions, see: Pellissier H. Adv. Synth. Catal. 2015; 357: 2745
- 34a Beletskyaya IP, Nájera C, Yus M. Chem. Rev. 2018; 118: 5080
- 34b Escorihuela J, Burguete MI, Luis SV. Chem. Soc. Rev. 2013; 42: 5595
- 35a Evans DA, Seidel D. J. Am. Chem. Soc. 2005; 127: 9958
- 35b Evans DA, Mito S, Seidel D. J. Am. Chem. Soc 2007; 129: 11583
- 36a Shi D, Xie Y, Zhou H, Xia C, Huang HM. Angew. Chem. Int. Ed. 2012; 51: 1248
- 36b Chen Y, Liu X, Luo W, Feng X. Synlett 2017; 28: 966
- 37 For catalytic Michael–Michael–Henry reactions starting from α-keto amides, see: Baslé O, Raimondi W, Duque M. delM. S, Bonne D, Constantieux T, Rodriguez J. Org. Lett. 2010; 12: 5246
- 38a Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
- 38b Albrecht L, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
- 38c Pellissier H. Adv. Synth. Catal. 2012; 354: 237
- 38d Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
- 39a Sasaki S, Suzuki H, Ouchi H, Asakawa T, Inai M, Sakai R, Shimamoto K, Hamashima Y, Kan T. Org. Lett. 2014; 16: 564
- 39b Ouchi H, Asahina A, Asakawa T, Inai M, Hamashima Y, Kan T. Org. Lett. 2014; 16: 1980
- 39c Inai M, Ouchi H, Asahina A, Asakawa T, Hamashima Y, Kan T. Chem. Pharm. Bull. 2016; 64: 723
- 40 For a general review on catalytic asymmetric [3+2] cycloadditions, see: Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
- 41 For a recent review on biologically active isoxazolidines, see: Berthet M, Cheviet T, Dujardin G, Parrot I, Martinez J. Chem. Rev. 2016; 116: 15235
- 42a Seerden J.-PG, Scholte op Reimer AW. A, Scheeren HW. Tetrahedron Lett. 1994; 35: 4419
- 42b Seerden J.-PG, Kuypers MM. M, Scheeren HW. Tetrahedron: Asymmetry 1995; 6: 1441
- 42c Seerden J.-PG. Boeren M. M. M, Scheeren HW. Tetrahedron 1997; 53: 11843
- 42d Simonsen KB, Bayón P, Hazell RG, Gothelf KV, Jørgensen KA. J. Am. Chem. Soc. 1999; 121: 3845
- 42e Jensen KB, Hazell RG, Jørgensen KA. J. Org. Chem. 1999; 64: 2353
- 42f Jensen KB, Roberson M, Jørgensen KA. J. Org. Chem. 2000; 65: 9080
- 42g Ashizawa T, Ohtsuki N, Miura T, Ohya M, Shinozaki T, Ikeno T, Yamada T. Heterocycles 2006; 68: 1801
- 42h Jiao P, Nakashima D, Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 2411
- 42i Yanagisawa A, Izumiseki A, Sugita T, Kushihara N, Yoshida K. Synlett 2012; 107
- 43 Inouye Y, Hara J, Kakisawa H. Chem. Lett. 1980; 9: 1407
- 44a Dugave C, Demange L. Chem. Rev. 2003; 103: 2475
- 44b Vlatkovic M, Collins BS. L, Feringa BL. Chem. Eur. J. 2016; 22: 17080
- 45 Fischer E. Ber. Dtsch. Chem. Ges. 1894; 27: 3189
- 46a Crawford JM, Sigman MS. Synthesis 2019; 51: 1021
- 46b Romanazzi G, Degennaro L, Mastrorilli P, Luisi R. ACS Catal. 2017; 7: 4100
- 46c Sohtome Y, Nagasawa K. Chem. Commun. 2012; 48: 7777
- 47a Meggers E. Eur. J. Inorg. Chem. 2011; 2911
- 47b Gong L, Chen L.-A, Meggers E. Angew. Chem. Int. Ed. 2014; 53: 10868
- 47c Constable EC. Chem. Soc. Rev. 2013; 42: 1637
- 47d Ehnbom A, Ghosh SK, Lewis KG, Gladysz JA. Chem. Soc. Rev. 2016; 45: 6799
- 47e Zhang L, Meggers E. Acc. Chem. Res. 2017; 50: 320
- 47f Huang X, Meggers E. Acc. Chem. Res. 2019; 52: 833
- 48a Vogl EM, Gröger H, Shibasaki M. Angew. Chem. Int. Ed. 1999; 38: 1570
- 48b Hong L, Sun W, Yang D, Li G, Wang R. Chem. Rev. 2016; 116: 4006
- 49a Roscales S, Plumet J. Org. Biomol. Chem. 2018; 16: 8446
- 49b Rane D, Sibi M. Curr. Org. Synth. 2011; 8: 616
- 50a Suga H, Hashimoto Y, Toda Y, Fukushima K, Esaki H, Kikuchi A. Angew. Chem. Int. Ed. 2017; 56: 11936
- 50b Toda Y, Koyama M, Esaki H, Fukushima K, Suga H. Heterocycles 2018; 97: 147
- 51 Yu Z.-X, Caramella P, Houk KN. J. Am. Chem. Soc. 2003; 125: 15420
- 52 Huisgen R, Wilhelm M. Tetrahedron Lett. 1961; 2: 583
- 53 The precise geometry could not be determined.
- 54 Metal-dependent enantioswitching was also observed. (R,R)-20 was obtained as the major product with Ni(II)–(R,R)-diamine complex. In contrast, the (S,S)-20 required the Cu(II)–(R,R)-diamine complex.
- 55 Zhu MK, Zhao JF, Loh TP. J. Am. Chem. Soc. 2010; 132: 6284
For reviews on protecting-group-free synthesis, see:
For reviews on chemoselectivity, see:
For our work on catalytic asymmetric Michael reactions of 1,3-dicarbonyl compounds, see:
For our accounts, see:
For our work on catalytic asymmetric halogenations of 1,3-dicarbonyl compounds, see:
For our work on catalytic asymmetric Mannich-type reactions of 1,3-dicarbonyl compounds, see:
For our work on catalytic asymmetric aldol-type reactions of 1,3-dicarbonyl compounds, see:
For reviews on the use of α-keto esters as pronucleophiles, see:
For leading work on α-keto esters as pronucleophiles in catalytic asymmetric homo-aldol reaction, see:
In Mannich-type reaction with α-imino esters:
In catalytic asymmetric amination reaction with azodicarboxylates:
In catalytic asymmetric cross-aldol reaction:
For leading work on α-keto amides as pronucleophiles for catalytic asymmetric Mannich-type reactions with N-thiophenesulfonyl imines, see:
For other recent examples, see:
For selected reviews, see:
For general reviews on catalytic asymmetric fluorinations, see:
For the synthesis of (±)-β-fluoro-α-keto esters, see:
For reviews that involve metal-dependent enantioswitching, see:
For catalytic Michael/Michael/Henry reactions starting from α-keto esters, see:
For selected examples of catalytic asymmetric IED [3+2] cycloadditions of nitrones, see:
For selected reviews, see:
For reviews, see:
For reviews on chirality at metal, see:
For reviews on achiral additive effect in asymmetric catalysis, see:
For reviews on catalytic asymmetric [3+2] cycloadditions of nitrile oxides, see:
For recent examples of catalytic IED asymmetric [3+2] cycloadditions of nitrile oxides, see: