Synlett 2019; 30(20): 2273-2278
DOI: 10.1055/s-0039-1690735
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of 3,4-Disubstituted 7-Azaindoles Employing SEM as a Dual Protecting–Activating Group

Piroska Gyárfás
a   BioBlocks Magyarország Kft., Berlini u. 47-49, 1045 Budapest, Hungary
c   ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
,
János Gerencsér
a   BioBlocks Magyarország Kft., Berlini u. 47-49, 1045 Budapest, Hungary
,
Warren S. Wade
b   BioBlocks, Inc., 9885 Mesa Rim Road, Suite 101, San Diego, CA 92121, USA   Email: tmeyer@bioblocks.com
,
László Ürögdi
a   BioBlocks Magyarország Kft., Berlini u. 47-49, 1045 Budapest, Hungary
,
Zoltán Novák
c   ELTE ‘Lendület’ Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
,
S. Todd Meyer
b   BioBlocks, Inc., 9885 Mesa Rim Road, Suite 101, San Diego, CA 92121, USA   Email: tmeyer@bioblocks.com
› Author Affiliations
Further Information

Publication History

Received: 12 August 2019

Accepted after revision: 14 October 2019

Publication Date:
06 November 2019 (online)


Abstract

An efficient method for nucleophilic aromatic substitution on 7-azaindoles has been developed. The reaction is facilitated by the unique dual influence of SEM as both protecting and activating group, permitting mild conditions and short reaction times that are compatible with sensitive functional groups. The method is suitable for the synthesis of a broad range of products, most notably ethers.

Supporting Information

 
  • References and Notes

  • 1 Current address: Teleki utca 80., 1183 Budapest, Hungary.
  • 2 Mérour J.-Y, Buron F, Plé K, Bonnet P, Routier S. Molecules 2014; 19: 19935
  • 3 Irie T, Sawa M. Chem. Pharm. Bull. 2018; 66: 29
  • 4 Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS. M, Fong D, Zhu Y.-L, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim S.-H, Schlessinger J, Zhang KY. J, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 3041
  • 5 Dammeijer F, Lievense LA, Kaijen-Lambers ME, van Nimwegen M, Bezemer K, Hegmans JP, van Hall T, Hendriks RW, Aerts JG. Cancer Immunol. Res. 2017; 5: 535
  • 6 Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC. S, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park C.-M, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW. Nat. Med. 2013; 19: 202
  • 7 Mendiola J, Baeza A, Alvarez-Builla J, Vaquero JJ. J. Org. Chem. 2004; 69: 4974
  • 8 Echalier A, Bettayeb K, Ferandin Y, Lozach O, Clément M, Valette A, Liger F, Marquet B, Morris JC, Endicott JA, Joseph B, Meijer L. J. Med. Chem. 2008; 51: 737
  • 9 Zhang Z, Yang Z, Wong H, Zhu J, Meanwell NA, Kadow JF, Wang T. J. Org. Chem. 2002; 67: 6226
  • 10 Gourdain S, Dairou J, Denhez C, Bui LC, Rodrigues-Lima F, Janel N, Delabar JM, Cariou K, Dodd RH. J. Med. Chem. 2013; 56: 9569
  • 11 Zhou Q, Phoa AF, Abbassi RH, Hoque M, Reekie TA, Font JS, Ryan RM, Stringer BW, Day BW, Johns TG, Munoz L, Kassiou M. J. Med. Chem. 2017; 60: 2052
  • 12 Wang X, Zhi B, Baum J, Chen Y, Crockett R, Huang L, Eisenberg S, Ng J, Larsen R, Martinelli M, Reider P. J. Org. Chem. 2006; 71: 4021
  • 13 Adams ND, Adams JL, Burgess JL, Chaudhari AM, Copeland RA, Donatelli CA, Drewry DH, Fisher KE, Hamajima T, Hardwicke MA, Huffman WF, Koretke-Brown KK, Lai ZV, McDonald OB, Nakamura H, Newlander KA, Oleykowski CA, Parrish CA, Patrick DR, Plant R, Sarpong MA, Sasaki K, Schmidt SJ, Silva DJ, Sutton D, Tang J, Thompson CS, Tummino PJ, Wang JC, Xiang H, Yang J, Dhanak D. J. Med. Chem. 2010; 53: 3973
  • 14 Shin H, Kim MK, Chong Y. Chem. Pharm. Bull. 2014; 62: 217
  • 15 Thutewohl A, Schirok H, Bennabi S, Figueroa-Pérez S. Synthesis 2006; 629
  • 16 Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330
  • 17 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
  • 18 Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
  • 19 Caldwell JJ, Cheung K.-M, Collins I. Tetrahedron Lett. 2007; 48: 1527
  • 20 Figueroa-Pérez S, Bennabi S, Schirok H, Thutewohl M. Tetrahedron Lett. 2006; 47: 2069
  • 21 Scott JS, Degorce SL, Anjum R, Culshaw J, Davies RD. M, Davies NL, Dillman KS, Dowling JE, Drew L, Ferguson AD, Groombridge SD, Halsall CT, Hudson JA, Lamont S, Lindsay NA, Marden SK, Mayo MF, Pease JE, Perkins DR, Pink JH, Robb GR, Rosen A, Shen M, McWhirter C, Wu D. J. Med. Chem. 2017; 60: 10071
  • 22 Tan L, Nomanbhoy T, Gurbani D, Patricelli M, Hunter J, Geng J, Herhaus L, Zhang J, Pauls E, Ham Y, Choi HG, Xie T, Deng X, Buhrlage SJ, Sim T, Cohen P, Sapkota G, Westover KD, Gray NS. J. Med. Chem. 2015; 58: 183
  • 23 Nakajima Y, Tojo T, Morita M, Hatanaka K, Shirakami S, Tanaka A, Sasaki H, Nakai K, Mukoyoshi K, Hamaguchi H, Takahashi F, Moritomo A, Higashi Y, Inoue T. Chem. Pharm. Bull. 2015; 63: 341
  • 24 Potashman MH, Bready J, Coxon A, DeMelfi TM, DiPietro L, Doerr N, Elbaum D, Estrada J, Gallant P, Germain J, Gu Y, Harmange J.-C, Kaufman SA, Kendall R, Kim JL, Kumar GN, Long AM, Neervannan S, Patel VF, Polverino A, Rose P, van der Plas S, Whittington D, Zanon R, Zhao H. J. Med. Chem. 2007; 50: 4351
  • 25 Kim KS, Zhang L, Schmidt R, Cai Z.-W, Wei D, Williams DK, Lombardo LJ, Trainor GL, Xie D, Zhang Y, An Y, Sack JS, Tokarski JS, Darienzo C, Kamath A, Marathe P, Zhang Y, Lippy J, Jeyaseelan R, Wautlet B, Henley B, Gullo-Brown J, Manne V, Hunt JT, Fargnoli J, Borzilleri RM. J. Med. Chem. 2008; 51: 5330
  • 26 Goodfellow VS, Loweth CJ, Ravula SB, Wiemann T, Nguyen T, Xu Y, Todd DE, Sheppard D, Pollack S, Polesskaya O, Marker DF, Dewhurst S, Gelbard HA. J. Med. Chem. 2013; 56: 8032
  • 27 Thibault D, L’Hereux A, Bhide RS, Ruel R. Org. Lett. 2003; 5: 5023
  • 28 Padilla F, Bhagirath N, Chen S, Chiao E, Goldstein DM, Hermann JC, Hsu J, Kennedy-Smith JJ, Kuglstatter A, Liao C, Liu W, Lowrie LE, Luk KC, Lynch SM, Menke J, Niu L, Owens TD, O-Yang C, Railkar A, Schoenfeld RC, Slade M, Steiner S, Tan Y.-C, Villaseñor AG, Wang C, Wanner J, Xie W, Xu D, Zhang X, Zhou M, Lucas MC. J. Med. Chem. 2013; 56: 1677
  • 29 General Procedure: 2-{(4-Isopropoxy-3-phenylpyrrolo[2,3-b]pyridin-1-yl)methoxy}ethyltrimethylsilane (9)To a mixture of isopropanol (300 μL, 3.94 mmol) in dry dimethyl sulfoxide (3 mL) was added sodium hydride (60% dispersion in mineral oil, 157 mg, 3.92 mmol) in small portions. The reaction mixture was stirred at room temperature for 15 min. To the reaction mixture was added a solution of 2-[(4-fluoro-3-phenylpyrrolo[2,3-b]pyridin-1-yl)methoxy]ethyltrimethylsilane (150 mg, 0.438 mmol) in dry dimethyl sulfoxide (3 mL) at room temperature. The reaction mixture was stirred at room temperature for 15 min. The reaction mixture was poured into water (60 mL) and extracted with a mixture of chloroform and 2-propanol (3:1, 3 × 15 mL). The combined organic layers were dried over sodium sulfate, filtered, and evaporated to give the title compound (165 mg, 0.431 mmol, 98%) as a pale yellow oil.1H NMR (500 MHz, DMSO-d 6): δ = 8.17 (d, J = 5.5 Hz, 1 H), 7.69–7.56 (m, 3 H), 7.41–7.32 (m, 2 H), 7.31–7.19 (m, 1 H), 6.78 (d, J = 5.5 Hz, 1 H), 5.63 (s, 2 H), 4.91–4.79 (m, 1 H), 3.57 (t, J = 8.1 Hz, 2 H), 1.30 (d, J = 6.0 Hz, 6 H), 0.85 (t, J = 8.0 Hz, 2 H), –0.07 (s, 9 H). 13C NMR (126 MHz, DMSO-d 6): δ = 158.80, 150.72, 145.46, 135.21, 129.52, 128.01, 126.30, 125.64, 116.38, 108.39, 100.83, 72.94, 70.48, 65.89, 22.04, 17.65, –0.90. HRMS (ESI): m/z calcd for C22H31N2O2Si: 383.2155 [M + H]+; found: 383.2138.