Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(20): 2290-2294
DOI: 10.1055/s-0039-1690742
DOI: 10.1055/s-0039-1690742
letter
A Facile Approach to Catalyst-Free Cyanation and Azidation of Organic Compounds and a One-Pot Preparation of 5-Substituted 1H-Tetrazoles by Using a Dimethyl Sulfoxide–Nitric Acid Combination
The authors gratefully acknowledge the financial support of this work by the Research Council of the University of Birjand.Further Information
Publication History
Received: 06 September 2019
Accepted after revision: 23 October 2019
Publication Date:
31 October 2019 (online)
Abstract
In this study, cyanations or azidations of imines were performed by using hydroxy(dimethyl)-λ4-sulfanecarbonitrile or azido(dimethyl)-λ4-sulfanol, respectively, prepared in situ by treatment of potassium cyanide or sodium azide with a dimethyl sulfoxide–nitric acid combination. Furthermore, a one-pot preparation of 5-substituted 1H-tetrazole derivatives was carried out by using this reagent combination in the presence of an aldehyde, hydroxylamine hydrochloride, and sodium azide under mild conditions.
Key words
dimethyl sulfoxide - nitric acid - Strecker reaction - amino nitriles - amino azides - tetrazolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690742.
- Supporting Information
-
References and Notes
- 1a Kazemnejadi M, Sardarian AR. RSC Adv. 2016; 6: 91999
- 1b Wang W, Wang Y, Wu B, Cong R, Gao W, Qin B, Yang T. Catal. Commun. 2015; 58: 174
- 1c Yang T, Bartoszewicz A, Ju J, Sun J, Liu Z, Zou X, Wang Y, Li G, Liao F, Martín-Matute B, Lin J. Angew. Chem. Int. Ed. 2011; 50: 12555
- 2a Dekamin MG, Azimoshan M, Ramezani L. Green Chem. 2013; 15: 811
- 2b Shaabani A, Maleki A, Soudi MR, Mofakham H. Catal. Commun. 2009; 10: 945
- 3a Desai UV, Mitragotri SD, Thopate TS, Pore DM, Wadgaonkar PP. Monatsh. Chem. 2007; 138: 759
- 3b Eslami M, Dekamin MG, Motlagh L, Maleki A. Green Chem. Lett. Rev. 2018; 11: 36
- 3c Maleki A, Haji RF, Ghassemi M, Ghafuri H. J. Chem. Sci. 2017; 129: 457
- 3d Baghery S, Zolfigol MA, Schirhagl R, Hasani M, Stuart MC, Nagl A. Appl. Organomet. Chem. 2017; 31: e3883
- 4 Takahashi E, Fujisawa H, Yanai T, Mukaiyama T. Chem. Lett. 2005; 34: 318
- 5 Yadav JS, Reddy BS, Eeshwaraiah B, Srinivas M. Tetrahedron 2004; 60: 1767
- 6a Khalafi-Nezhad A, Foroughi HO, Panahi F. Heteroat. Chem. 2013; 24: 1
- 6b Kantam ML, Mahendar K, Sreedhar B, Choudary BM. Tetrahedron 2008; 64: 3351
- 7 Pathare SP, Akamanchi KG. Tetrahedron Lett. 2012; 53: 871
- 8 Liu Y, Mo K, Cui Y. Inorg. Chem. 2013; 52: 10286
- 9a Seayad AM, Ramalingam B, Chai CL, Li C, Garland MV, Yoshinaga K. Chem. Eur. J. 2012; 18: 5693
- 9b Rajabi F, Nourian S, Ghiassian S, Balu AM, Saidi MR, Serrano-Ruiz JC, Luque R. Green Chem. 2011; 13: 3282
- 10 Rafiee E, Rashidzadeh S, Joshaghani M, Chalabeh H, Afza K. Synth. Commun. 2008; 38: 2741
- 11 Takamura M, Hamashima Y, Usuda H, Kanai M, Shibasaki MA. Angew. Chem. Int. Ed. 2000; 39: 1650
- 12 Gualtierotti JB, Schumacher X, Wang Q, Zhu J. Synthesis 2013; 45: 1380
- 13 Hajipour AR, Rajaei A, Ruoho AE. Tetrahedron Lett. 2009; 50: 708
- 14 Zarchi MA. K, Escandari Z. J. Appl. Polym. Sci. 2011; 4: 1916
- 15 Bosmani A, Pujari SA, Besnard C, Guénée L, Poblador-Bahamonde AI, Lacour J. Chem. Eur. J. 2017; 23: 8678
- 16a Ren R, Zhao H, Huan L, Zhu C. Angew. Chem. Int. Ed. 2015; 54: 12692
- 16b Sharma A, Hartwig JF. Nature 2015; 517: 600
- 17 Lu M.-Z, Wang C.-Q, Loh T.-P. Org. Lett. 2015; 17: 6110
- 18 Varma RS, Naicker KP, Kumar D. J. Mol. Catal. A: Chem. 1999; 149: 153
- 19 Varadaraji D, Suban SS, Ramasamy VR, Kubendiran K, Raguraman JS. K, Nalilu SK, Pati HN. Org. Commun. 2010; 3: 45
- 20a Malik MA, Al-Thabaiti SA, Malik MA. Int. J. Mol. Sci. 2012; 13: 10880
- 20b May BC, Abell AD. J. Chem. Soc., Perkin Trans. 1 2002; 172
- 21 Kantam ML, Kumar KS, Raja KP. J. Mol. Catal. A: Chem. 2006; 247: 186
- 22 Lang L, Zhou H, Xue M, Wang X, Xu Z. Mater. Lett. 2013; 106: 443
- 23 Frija LM. T, Ismael A, Santos Cristiano ML. Molecules 2010; 15: 3757
- 24 Fischer D, Klapötke TM, Stierstorfer J. Angew. Chem. Int. Ed. 2015; 54: 10299
- 25 Hantzsch VA, Vagt A. Justus Liebigs Ann. Chem. 1901; 314: 339
- 26 Moradi P, Ghorbani-Choghamarani A. Appl. Organomet. Chem. 2017; 31: e3602
- 27 Halder M, Islam MM, Singh P, Singh Roy A, Islam SM, Sen K. ACS Omega 2018; 3: 8169
- 28 Mehraban JA, Azizi K, Jalali MS, Heydari A. ChemistrySelect 2018; 3: 116
- 29 Molaei S, Tamoradi T, Ghadermazi M, Ghorbani-Choghamarani A. Microporous Mesoporous Mater. 2018; 272: 241
- 30 Samanta PK, Biswas R, Das T, Nandi M, Adhikary B, Richards RM, Biswas P. J. Porous Mater. 2019; 26: 145
- 31 Salahshournia B, Hamadi H, Nobakht V. Appl. Organomet. Chem. 2018; 32: e4416
- 32 De Luca L, Giacomelli G, Porcheddu A. J. Org. Chem. 2002; 67: 6272
- 33 Goheen D, Bennett C. J. Org. Chem. 1961; 26: 1331
- 34 Phenyl(phenylamino)acetonitrile (7a) and N-[Azido(phenyl)methyl]aniline (8a); Typical Procedure CAUTION: Due to the formation of HN3 during the preparation of α-amino azides, the reactions should be performed in a well-ventilated fume hood and behind a blast shield. Cyanides present a serious risk of poisoning by inhalation, skin contact, or swallowing. A 14:1 mixture of DMSO and HNO3 (5 mL) was stirred for 20 min at 40 °C. Then, KCN or NaN3 (1 mmol), PhCHO (1 mmol), PhNH2, (1 mmol), and H2O (2 mL) were simultaneously added to the mixture. Upon completion of reaction (TLC), the mixture was neutralized with 01. M aq NaOH and extracted with CH2Cl2 (2 × 20 mL). The solvent was removed, and the crude product was purified by chromatography. 7a White solid; yield: 9.3 mg (90%); mp 74–76 °C. 1H NMR (250 MHz, CDCl3): δ = 4.07 (br s, 1 H, N–H), 5.48 (s, 1 H, C–H), 6.77–6.80 (m, 2 H, Ar–H), 6.92 (t, J = 7.50 Hz, 1 H, Ar–H), 7.22–7.28 (m, 2 H, Ar–H), 7.46 (d, J = 7.50 Hz, 3 H, Ar–H), 7.55–7.59 (m, 2 H, Ar–H). 13C NMR (62.9 MHz, CDCl3): δ = 50.1, 114.1, 118.1, 120.2, 127.3, 129.3, 129.5, 133.9, 144.7. Anal. Calcd for C14H12N2: C, 80.74; H, 5.81; N, 13.45. Found: C, 80.67; H, 5.71; N, 13.47. 8a White solid; yield: 10.2 mg (91%); mp 82 °C. 1H NMR (250 MHz, CDCl3): δ = 4.03 (d, J = 5.00 Hz, 1 H, N–H), 5.44 (d, J = 5.00 Hz, 1 H, C–H), 6.77–6.88 (m, 2 H, Ar–H), 6.92 (d, J = 7.00 Hz, 1 H, Ar–H), 7.25–7.27 (m, 2 H, Ar–H), 7.29 (d, J = 7.00 Hz, 3 H, Ar–H), 7.45–7.61 (m, 2 H, Ar–H). 13C NMR (62.9 MHz, CDCl3): δ = 62.3, 114.6, 120.5, 125.3, 129.2, 130.0, 131.0, 146.1, 146.6. MS: m/z = 224 [M+]. Anal. Calcd for C13H12N4: C, 69.62; H, 5.39; N, 24.98. Found: C, 69.66; H, 5.33; N, 25.07.
- 35 5-Substituted 1H-Tetrazoles 9a–j; General Procedure CAUTION: Due to the formation of HN3 during the preparation of 5-substituted 1H-tetrazoles, the reactions should be performed in a well-ventilated fume hood and behind a blast shield. A 14:1 mixture of DMSO and HNO3 (5 mL) was stirred for 20 min at 40 °C. PhCHO (1.0 mmol), NH2OH·HCl (1.2 mmol), and H2O (2 mL) were added, the mixture was stirred for 20 min at 40 °C, and NaN3 (1.2 mmol) was added. Upon completion of reaction (TLC), the mixture was neutralized with 0.1 M aq NaOH and extracted with CH2Cl2 (2 × 20 mL). The solvent was removed, and the crude product was purified by chromatography. 5-Phenyl-1H-tetrazole (9a) White solid; yield: 6.8 mg (94%); mp 214–215 °C (Lit.7 214–215 °C). 1H NMR (250 MHz, DMSO-d6): δ = 3.38 (s, 1 H), 7.59–7.61 (m, 3 H), 8.02–8.06 (m, 2 H). 13C NMR (62.9 MHz, DMSO-d6): δ = 121.1, 126.8, 129.9, 141.2, 155.0. Anal. Calcd for C7H6N4; C, 57.53; H, 4.14; N, 38.34. Found: C, 57.57; H, 4.34; N, 38.44.