Synlett 2020; 31(03): 255-260
DOI: 10.1055/s-0039-1690782
letter
© Georg Thieme Verlag Stuttgart · New York

Transposition of Aromaticity from a Furan to a Cyclohexane Ring in Furoisoindoles During the Interaction of 3-(Furyl)allylamines with Bromomaleic Anhydride

Kseniia A. Alekseeva
a   Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
Elizaveta A. Kvyatkovskaya
a   Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
Eugeniya V. Nikitina
a   Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
a   Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
Svetlana M. Eroshkina
a   Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
,
Khidmet S. Shikhaliev
b   Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya sq., Voronezh 394018, Russian Federation
,
Hieu H. Truong
c   Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam   Email: truonghonghieu@duytan.edu.vn
,
Victor N. Khrustalev
a   Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
d   N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
,
a   Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: fzubkov@sci.pfu.edu.ru
› Author Affiliations
Funding for this research was provided by the Russian Science Foundation (RSF, project no. 18-13-00456).
Further Information

Publication History

Received: 12 November 2019

Accepted after revision: 09 December 2019

Publication Date:
13 January 2020 (online)


Abstract

An unexpected four-step reaction sequence was discovered in the course of investigation of the interaction between 3-(furan-2-yl)allylamines and bromomaleic anhydride. This conversion begins with the initial N-acylation of the allylamines by the anhydride, followed by intramolecular Diels–Alder reaction, which is accompanied by a dehydrohalogenation, and ends with the formation of partially unsaturated furo[2,3-f]isoindoles followed by transposition of aromaticity from the furan moiety to the neighboring cyclohexane ring. The reaction between 3-(furan-3-yl)allylamines and bromomaleic anhydride does not stop at a furo[2,3-f]isoindole formation step, but proceeds further with the cleavage of the furan ring in a 100% atom-efficient fashion to provide polysubstituted isoindoline-4-carboxylic acids.

Supporting Information

 
  • References and Notes

  • 3 Haj-Yehia A, Khan M. US 20060258652A1, 2006
  • 4 Jin B, Dong Q, Hung G. WO 2018151830, 2018
    • 7a Horak YI, Lytvyn RZ, Laba Y.-OV, Homza YV, Zaytsev VP, Nadirova MA, Nikanorova TV, Zubkov FI, Varlamov AV, Obushak MD. Tetrahedron Lett. 2017; 58: 4103
    • 7b Zubkov FI, Zaytsev VP, Mertsalov DF, Nikitina EV, Horak YI, Lytvyn RZ, Homza YV, Obushak MD, Dorovatovskii PV, Khrustalev VN, Varlamov AV. Tetrahedron 2016; 72: 2239
    • 7c Horak YI, Lytvyn RZ, Homza YV, Zaytsev VP, Mertsalov DF, Babkina MN, Nikitina EV, Lis T, Kinzhybalo V, Matiychuk VS, Zubkov FI, Varlamov AV, Obushak MD. Tetrahedron Lett. 2015; 56: 4499
  • 8 Polyanskii KB, Alekseeva KA, Raspertov PV, Kumandin PA, Nikitina EV, Gurbanov AV, Zubkov FI. Beilstein J. Org. Chem. 2019; 15: 769

    • Bromomaleic anhydride as an internal dienophile:
    • 9a Mellor JM, Wagland AM. J. Chem. Soc., Perkin Trans. 1 1989; 997
    • 9b Mellor JM, Wagland AM. Tetrahedron Lett. 1987; 28: 5339
  • 10 General Procedure for the Synthesis of the Initial Allylamines 2 and 15 Powdered anhydrous MgSO4 (1.97 g, 16.4 mmol) was added to a stirred solution of 2-furylacrolein or 3-furylacrolein (1.00 g, 8.2 mmol) and the corresponding amine (8.2 mmol) in CH2Cl2 (20 mL) at r.t. After approx. 12 h, MgSO4 was filtered off through a fine layer of SiO2, washed with CH2Cl2 (2 × 15 mL), and the solution was concentrated under reduced pressure. The residue was diluted with MeOH (20 mL), and then NaBH4 (0.62 g, 16.4 mmol) was added in small portions within 10 min. The solution was vigorously stirred for 3 h at r.t., then the reaction mixture was poured into H2O (80 mL) and extracted with CH2Cl2 (3 × 30 mL); the combined organic layers were dried over anhydrous MgSO4, concentrated, and the residue was used in the next stage after purification via flash chromatography (a mixture of hexane/EtOAc was used as eluent). Selected Physical and Spectral Data for Compound 2b Brown oil; 68% yield (0.92 g). 1H NMR (600.2 MHz, CDCl3, 22 °C): δ = 7.31 (br d, J = 1.7 Hz, 1 H, H-5-Fur), 6.36–6.33 (m, 2 H, H-4-Fur and H-3-Vinyl), 6.23 (d t, J = 6.1, 15.6 Hz, 1 H, H-2-Vinyl), 6.18 (br d, J = 3.5 Hz, 1 H, H-3-Fur), 3.36 (d d, J = 1.0, 6.1 Hz, 2 H, N-C H 2 -CH=), 2.87 (hept, J = 6.1 Hz, 1 H, CHMe2), 1.73 (br s, 1 H, NH), 1.08 (d, J = 6.1 Hz, 6 H, CHMe2 ) ppm. 13C NMR (150.9 MHz, CDCl3, 24 °C): δ = 152.8, 141.7, 127.7, 119.5, 111.2, 107.1, 49.1, 48.0, 23.0 (2 C) ppm. General Procedure for the Synthesis of the Target Furo[2,3-f]isoindolecarboxylic Acids 3 and 19 Bromomaleic anhydride (0.27 g, 1.5 mmol) was added to a solution of the appropriate allylamine 2 or 15 (1.5 mmol) in abs. 1,4-dioxane (10 mL). The mixture was heated at reflux (ca. 100 °C) for 1 h. The reaction mixture was cooled to r.t., and the obtained solid was filtered off, washed with ethanol (3 × 3 mL), and dried in the air. If necessary, the target compounds may be recrystallized from a mixture of EtOH/DMF. Selected Physical and Spectral Data for Compound 3b Beige needles; 76% yield (0.30 g), mp 286.3–286.5 °C (with decomp.). 1H NMR (600.2 MHz, DMSO-d 6, 140 °C): δ = 7.15 (s, 1 H, H-8), 4.69 (t, J = 8.7 Hz, 2 H, H-2), 4.53 (s, 2 H, H-7), 4.44 (hept, J = 6.7 Hz, 1 H, CHMe2), 3.61 (t, J = 8.7 Hz, 2 H, H-3), 1.34 (d, J = 6.7 Hz, 6 H, CHMe 2) ppm. 13C NMR (100.5 MHz, DMSO-d 6, 140 °C): δ = 169.3, 165.1, 164.9, 146.1, 134.3, 126.5, 122.0, 107.2, 73.2, 47.01, 44.9, 31.1, 20.4 (2 C) ppm.