Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(03): 285-289
DOI: 10.1055/s-0039-1690783
DOI: 10.1055/s-0039-1690783
letter
Manganese-Catalyzed Enantioselective Hydrogenation of Simple Ketones Using an Imidazole-Based Chiral PNN Tridentate Ligand
We thank the National Natural Science Foundation of China (Nos. 21706234, 21676253 and 21978271), the Natural Science Foundation of Zhejiang Province of China (Nos. LY19B060011 and LY15B060007) for financial support.Further Information
Publication History
Received: 28 October 2019
Accepted after revision: 11 December 2019
Publication Date:
10 January 2020 (online)
Abstract
A series of Mn(I) catalysts containing imidazole-based chiral PNN tridentate ligands with controllable ‘side arm’ groups have been established, enabling the inexpensive base-promoted asymmetric hydrogenation of simple ketones with outstanding activities (up to 8200 TON) and good enantioselectivities (up to 88.5% ee). This protocol features wide substrate scope and functional group tolerance, thereby providing easy access to a key intermediate of crizotinib.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690783.
- Supporting Information
-
References
- 1a Rogawski MA, Löscher W. Nat. Rev. Neurosci. 2004; 5: 553
- 1b Creighton CJ, Ramabadran K, Ciccone PE, Liu J, Orsini MJ, Reitz AB. Bioorg. Med. Chem. Lett. 2004; 14: 4083
- 1c Almeida L, Soares-Da-Silva P. Neurotherapeutics 2007; 4: 88
- 1d Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung P.-P, Pairish M, Jia L, Meng J, Funk L, Botrous I, McTigue M, Grodsky N, Ryan K, Padrique E, Alton G, Timofeevski S, Yamazaki S, Li Q, Zou H, Christensen J, Mroczkowski B, Bender S, Kania RS, Edwards MP. J. Med. Chem. 2011; 54: 6342
- 2a Noyori R, Ohkuma T. Angew. Chem. Int. Ed. 2001; 40: 40
- 2b Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
- 2c Mortreux A, Karim A. The Handbook of Homogeneous Hydrogenation. Wiley-VCH; Weinheim: 2007
- 2d Xie J. -H, Zhou Q. -L. Acc. Chem. Res. 2008; 41: 581
- 2e Yang GQ, Zhang W.-B. Chem. Soc. Rev. 2018; 47: 1783
- 2f Zhang ZF, Butt NA, Zhang WB. Chem. Rev. 2016; 116: 14769
- 2g Wang ZH, Zhang ZF, Liu YG, Zhang WB. Chin. J. Org. Chem. 2016; 36: 447
- 2h Yuan QJ, Zhang WB. Chin. J. Org. Chem. 2016; 36: 274
- 2i Wang YJ, Zhang ZF, Zhang WB. Chin. J. Org. Chem. 2015; 35: 528
- 3 For a review, see: Zhang Z, Butt NA, Zhou M, Liu D, Zhang W. Chin. J. Chem. 2018; 36: 443
- 4a Shimizu H, Igarashi D, Kuriyama W, Yusa Y, Sayo N, Saito T. Org. Lett. 2007; 9: 1655
- 4b Junge K, Wendt B, Addis D, Zhou S, Das S, Fleischer S, Beller M. Chem. Eur. J. 2011; 17: 101
- 4c Krabbe SW, Hatcher MA, Bowman RK, Mitchell MB, McClure MS, Johnson JS. Org. Lett. 2013; 15: 4560
- 4d Zatolochnaya OV, Rodríguez S, Zhang Y, Lao KS, Tcyrulnikov S, Li G, Wang X. -J, Qu B, Biswas S, Mangunuru HP. R, Rivalti D, Sieber JD, Desrosiers J.-N, Leung JC, Grinberg N, Lee H, Haddad N, Yee NK, Song JJ, Kozlowski MC, Senanayakea CH. Chem. Sci. 2018; 9: 4505
- 5a Hamada Y, Koseki Y, Fujii T, Maeda T, Hibino T, Makino K. Chem. Commun. 2008; 6206
- 5b Hibino T, Makino K, Sugiyama T, Hamada Y. ChemCatChem 2009; 1: 237
- 6a Berkessel A, Reichau S, von der Höh A, Leconte N, Neudörfl J.-M. Organometallics 2011; 30: 3880
- 6b Gajewski P, Renom-Carrasco M, Facchini SV, Pignataro L, Lefort L, de Vries JG, Ferraccioli R, Forni A, Piarulli U, Gennari C. Eur. J. Org. Chem. 2015; 1887
- 6c Hodgkinson R, Del Grosso A, Clarkson GJ, Wills M. Dalton Trans. 2016; 3992
- 7a Zhang D, Zhu E.-Z, Lin Z.-W, Li Y.-Y, Gao J.-X. Asian J. Org. Chem. 2016; 5: 1323
- 7b Friedfeld MR, Shelvin M, Hoyt JM, Krska SW, Tudge MT, Chirik PJ. Science 2013; 342: 1076
- 7c Friedfeld MR, Margulieux GW, Schaefer B, Chirik PJ. J. Am. Chem. Soc. 2014; 136: 13178
- 7d Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
- 7e Friedfeld MR, Zhong H, Ruck RT, Shelvin M, Chirik PJ. Science 2018; 360: 888
- 7f Monfette S, Turner ZR, Semproni SP, Chirik PJ. J. Am. Chem. Soc. 2012; 134: 4561
- 7g Friedfeld MR, Shevlin M, Margulieux GW, Campeau LC, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 3314
- 7h Chen J, Chen C, Ji C, Lu Z. Org. Lett. 2016; 18: 1594
- 8a Wang Y, Zhu L, Shao Z, Li G, Lan Y, Liu Q. J. Am. Chem. Soc. 2019; 141: 17337
- 8b Kallmeier F, Kempe R. Angew. Chem. Int. Ed. 2018; 57: 46
- 8c Filonenko GA, van Putten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
- 8d Garbe M, Junge K, Beller M. Eur. J. Org. Chem. 2017; 4344
- 8e Maji B, Barman MK. Synthesis 2017; 49: 3377
- 9 Widegren MB, Harkness GJ, Slawin AM. Z, Cordes DB, Clarke ML. Angew. Chem. Int. Ed. 2017; 56: 5825
- 10 Garbe M, Junge K, Walker S, Wei Z, Jiao H, Spannenberg A, Bachmann S, Scalone M, Beller M. Angew. Chem. Int. Ed. 2017; 56: 11237
- 11 Zhang L, Tang Y, Han Z, Ding K. Angew. Chem. Int. Ed. 2019; 58: 4973
- 12a Zirakzadeh A, de Aguiar SR. M. M, Stöger B, Widhalm M, Kirchner K. ChemCatChem 2017; 9: 1744
- 12b Wang D, Bruneau-Voisine A, Sortais J.-B. Catal. Commun. 2018; 105: 31
- 12c Demmans KZ, Olson ME, Morris RH. Organometallics 2018; 37: 4608
- 13 Ling F, Nian S, Chen J, Luo W, Wang Z, Lv Y, Zhong W. J. Org. Chem. 2018; 83: 10749
- 14a Ling F, Hou H, Chen J, Nian S, Yi X, Wang Z, Song D, Zhong W. Org. Lett. 2019; 11: 3937
- 14b Luo W, Hu H, Nian S, Qi L, Ling F, Zhong W. Org. Biomol. Chem. 2017; 15: 7523
- 14c Zhu L, Hu H, Qi L, Zheng Y, Zhong W. Eur. J. Org. Chem. 2016; 2139
- 14d Hu H, Yu S, Zhu L, Zhou L, Zhong W. Org. Biomol. Chem. 2016; 14: 752
- 14e Tu A, Hu H, Du T, Zhong W. Synth. Commun. 2014; 44: 3392
- 14f Tang Q, Tu A, Deng Z, Hu M, Zhong W. Chin. J. Org. Chem. 2013; 33: 954
- 15 General Procedure for the Preparation of Ligands: A solution of (S C , R FC )-1 (1 mmol), benzimidazole aldehyde (1.1 mmol) in anhydrous MeOH was stirred at 60 °C for 10–12 h, The reaction was cooled to room temperature, then NaBH4 (3 mmol) was added and the mixture was heated to 60 °C again, and stirred at this temperature for 4 h. The solvent was removed under vacuum, and the crude ligand was purified by column chromatography on silica gel. L2: Orange solid (432.0 mg, 75% yield); mp 84–85 °C; [α]D 20 = +120.0 (c = 0.5, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 7.71 (d, J = 7.8 Hz, 1 H), 7.55–7.53 (m, 2 H), 7.2–7.36 (m, 3 H), 7.21–7.14 (m, 8 H), 7.09–7.07 (m, 3 H), 7.02–6.99 (m, 1 H), 6.85–6.83 (m, 2 H), 5.03 (d, J = 16.8 Hz, 1 H), 4.87 (d, J = 16.8 Hz, 1 H), 4.48 (s, 1 H), 4.31 (s, 1 H), 4.17–4.15 (m, 1 H), 3.95 (s, 5 H), 3.86 (s, 1 H), 3.74 (d, J = 13.8 Hz, 1 H), 3.65 (d, J = 13.8 Hz, 1 H), 1.52 (d, J = 6.6 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 153.1, 142.4, 140.5 (d, J = 10.5 Hz), 137.6 (d, J = 9.0 Hz), 136.6, 135.7, 135.3, 135.1, 132.5, 132.4, 129.2, 128.7, 128.2, 128.12, 128.07, 127.8, 127.5, 126.3, 122.4, 121.8, 119.5, 109.6, 97.8 (d, J = 25.5 Hz), 75.0 (d, J = 9.0 Hz), 71.3 (d, J = 4.5 Hz), 69.7, 69.3, 69.0 (d, J = 4.5 Hz), 51.4 (d, J = 9.0 Hz), 46.4, 44.0, 20.0. 31P NMR (162 MHz, CDCl3): δ = –24.25. HRMS (ESI): m/z [M + H]+ calcd for C39H36FeN3P: 634.2069; found: 634.1996.
- 16 Liao S, Sun X.-L, Tang Y. Acc. Chem. Res. 2014; 47: 2260
- 17 de Koning PD, McAndrew D, Moore R, Moses IB, Boyles DC, Kissick K, Stanchina CL, Cuthbertson T, Kamatani A, Rahman L, Rodriguez R, Urbina A, Sandoval A, Rose PR. Org. Process Res. Dev. 2011; 15: 1018
- 18 General Procedure for the Asymmetric Hydrogenation of Ketones Under an argon atmosphere, a vial was charged with Mn(CO)5Br/L2 (0.1 mol%) and KOH (2 mol%), which were dissolved in dried MeOH (2 mL). The resulting red solution was stirred briefly before the ketone (1 mmol) was added. The vial was placed in an alloy plate that was then placed into an autoclave. The autoclave was purged five times with hydrogen, then pressurized to 3.0 Mpa, and stirred at room temperature for 10 h. After slowly releasing the hydrogen pressure, the solvent was removed, and the mixture was purified by passing through a short column of silica gel to afford the corresponding alcohol. The ee values of all compounds were determined by HPLC analysis with a chiral column. (R)-1-(4-Methoxyphenyl)ethan-1-ol (4k): Colorless oil (150.4 mg, 99% yield); 84.9% ee (R); [α]D 20 = +41.5 (c = 0.5, CHCl3). HPLC conditions: Chiralpak OJ-H column, hexane/isopropanol = 95:5; flow rate = 0.8 mL/min; UV detection at 220 nm; (S) = 33.74 min (minor), (R) = 35.98 min (major). 1H NMR (600 MHz, CDCl3): δ = 7.25 (d, J = 8.4 Hz, 2 H), 6.84 (d, J = 9.0 Hz, 2 H), 4.78 (q, J = 6.0 Hz, 1 H), 3.76 (s, 3 H), 2.57 (brs, 1 H), 1.43 (d, J = 6.6 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 158.9, 138.1, 126.7, 113.8, 69.8, 55.3, 25.0. (R)-1-(2,6-Dichloro-3-fluorophenyl)ethan-1-ol (4m): Colorless oil (182.2 mg, 88% yield); 85.1% ee (R); [α]D 20 = –13.1 (c = 0.5, CHCl3). HPLC conditions: Chiralpak OD-H column, hexane/isopropanol = 90:10 flow rate = 0.8 mL/min; UV detection at 220 nm; (S) = 13.31 min (minor), (R) = 14.02 min (major). 1H NMR (400 MHz, CDCl3): δ = 7.32–7.28 (dd, J = 8.8, 4.8 Hz,1 H), 7.06 (dd, J = 16.8, 8.4 Hz, 1 H), 5.64 (q, J = 7.2 Hz, 1 H), 2.84 (brs, 1 H), 1.69 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 157.3; (1 J C–F = 248 Hz), 140.5, 129.6; (3 J C–F = 7 Hz), 128.3, 121.5, 115.6; (2 J C–F = 23 Hz), 68.4, 21.0.
For selected examples, see:
For examples of asymmetric transfer hydrogenation, see: