Subscribe to RSS
DOI: 10.1055/s-0039-1690810
Organocatalyzed [3+3] Annulations for the Construction of Heterocycles
This work was financially supported by the National Natural Science Foundation of China (21871148, 21672109 and 21472097).Publication History
Received: 23 November 2019
Accepted after revision: 12 January 2020
Publication Date:
05 February 2020 (online)

Abstract
Six-membered heterocyclic systems are widely distributed in many natural products and pharmaceuticals, and the construction of highly functionalized six-membered heterocyclic compounds is an important topic in modern organic synthesis. Organocatalyzed [3+3] annulations represents an important method for assembling a substantial variety of six-membered cycles that contain one or more heteroatoms. This review describes the development of organocatalyzed [3+3] annulations for the synthesis of six-membered heterocycles, including organocatalysis using secondary amines, tertiary amines, phosphines, chiral phosphoric acids and N-heterocyclic carbenes.
1 Introduction
2 Secondary Amine Catalyzed [3+3] Annulations
2.1 Synthesis of Nitrogen Heterocycles
2.2 Synthesis of Oxygen Heterocycles
2.3 Synthesis of Sulfur Heterocycles
3 Tertiary Amine Catalyzed [3+3] Annulations
3.1 Catalysis through Multiple Hydrogen-Bonding Interactions
3.2 Catalysis of Tertiary Amines as Lewis Bases
4 Phosphine-Catalyzed [3+3] Annulations
4.1 Synthesis of Nitrogen Heterocycles
4.2 Synthesis of Oxygen Heterocycles
4.3 Synthesis of Heterocycles Containing Two or More Heteroatoms
5 Chiral Phosphoric Acid Catalyzed [3+3] Annulations
5.1 Synthesis of Nitrogen Heterocycles
5.2 Synthesis of Heterocycles Containing Two or More Heteroatoms
6 N-Heterocyclic Carbene Catalyzed [3+3] Annulations
6.1 Synthesis of Nitrogen Heterocycles
6.2 Synthesis of Oxygen Heterocycles
6.3 Synthesis of Heterocycles Containing Two or More Heteroatoms
7 Conclusion and Outlook
-
References
- 1 Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
- 2 Kobayashi S, Jorgensen KA. Cycloaddition Reactions in Organic Synthesis. Wiley-VCH; New York: 2002
- 3a MacMillan DW. C. Nature 2008; 455: 304
- 3b Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
- 3c Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
- 3d Guo H, Fan Y, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
- 4a Harrity JP. A, Provoost O. Org. Biomol. Chem. 2005; 3: 1349
- 4b Xu X, Doyle MP. Acc. Chem. Res. 2014; 47: 1396
- 4c Deng Y, Cheng Q, Doyle MP. Synlett 2017; 28: 1695
- 5a Fang X, Li J, Tao H, Wang C. Org. Lett. 2013; 15: 5554
- 5b Zhang L, Chen J, Liu S, Liang Y, Zhao Y. Adv. Synth. Catal. 2018; 360: 2172
- 5c Reddy TP, Krishna AV, Ramachary DB. Org. Lett. 2018; 20: 6979
- 5d Zhu Y, Jin H, Huang Y. Chem. Commun. 2019; 55: 10135
- 6 Marigo M, Schulte T, Franzen J, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 15710
- 7 Hayashi Y, Gotoh H, Masui R, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 4012
- 8a Sklenicka HM, McLaughlin MJ, Wei L, Gerasyuto AI, Brennessel WB. J. Am. Chem. Soc. 2002; 124: 10435
- 8b Gerasyuto AI, Hsung RP, Sydorenko N, Slafer B. J. Org. Chem. 2005; 70: 4248
- 8c Goodenough KM, Raubo P, Harrity JP. A. Org. Lett. 2005; 7: 2993
- 9 Ding X, Su R, Yang W, Deng W. Adv. Synth. Catal. 2018; 360: 4168
- 10 Zhu M, Wei Q, Gong L. Adv. Synth. Catal. 2008; 350: 1281
- 11 Wang S, Zhang Y, Dong G, Wu S, Zhu S, Miao Z, Yao J, Li H, Li J, Zhang W, Sheng C, Wang W. Org. Lett. 2013; 15: 5570
- 12 Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 13 Goudedranche S, Bugaut X, Constantieux T, Bonne D, Rodriguez J. Chem. Eur. J. 2014; 20: 410
- 14 Zhu Q, Zhang Y, Xu M, Sun X, Yang X, Shi F. J. Org. Chem. 2016; 81: 7898
- 15 Yue Z, Li W, Liu L, Wang C, Zhang J. Adv. Synth. Catal. 2016; 358: 3015
- 16 Zhu Y, Wang Z, Zhang J, Yu J, Yan L, Li Y, Chen L, Yan X. Eur. J. Org. Chem. 2018; 3: 347
- 17 Zheng Y, Cui L, Wang Y, Zhou Z. J. Org. Chem. 2016; 81: 4340
- 18 Yin S, Zhang S, Zhang J, Sun B, Fan W, Wu B, Wang X. RSC Adv. 2016; 6: 84248
- 19 Chen X, Zhang J, Zhang S, Kong L, Wang Y, Wang X. Org. Lett. 2015; 17: 42
- 20 Chen X, Zhang J, Yin S, Li H, Zhou W, Wang X. Org. Lett. 2015; 17: 4188
- 21 Wu L, Zheng Y, Wang Y, Zhou Z. RSC Adv. 2016; 6: 11602
- 22a Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
- 22b Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
- 22c Xie P, Huang Y. Eur. J. Org. Chem. 2013; 6213
- 23 Li C, Zhang Q, Tong X. Chem. Commun. 2010; 46: 7828
- 24 Li K, Hu J, Liu H, Tong X. Chem. Commun. 2012; 48: 2900
- 25 Ni C, Tong X. J. Am. Chem. Soc. 2016; 138: 7872
- 26 Zhou W, Ni C, Chen J, Wang D, Tong X. Org. Lett. 2017; 19: 1890
- 27 Ni C, Zhang Y, Hou Y, Tong X. Chem. Commun. 2017; 53: 2567
- 28a Ye L, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
- 28b Fan Y, Kwon O. Chem. Commun. 2013; 49: 11588
- 28c Wei Y, Shi M. Org. Chem. Front. 2017; 4: 1876
- 28d Guo H, Fan Y, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
- 28e Ni H, Chan W, Lu Y. Chem. Rev. 2018; 118: 9344
- 29 Guo H, Xu Q, Kwon O. J. Am. Chem. Soc. 2009; 131: 6318
- 30 Jin H, Lai J, Huang Y. Org. Lett. 2019; 21: 2843
- 31 Li N, Jia P, Huang Y. Chem. Commun. 2019; 55: 10976
- 32 Hu J, Dong W, Wu X, Tong X. Org. Lett. 2012; 14: 5530
- 33 Zhang L, Liu H, Qiao G, Hou Z, Liu Y, Xiao Y, Guo H. J. Am. Chem. Soc. 2015; 137: 4316
- 34 Zhou L, Yuan C, Zhang C, Zhang L, Gao Z, Wang C, Liu H, Wu Y, Guo H. Adv. Synth. Catal. 2017; 359: 2316
- 35 Liang L, Huang Y. Org. Lett. 2016; 18: 2604
- 36 Zhu R, Dai W, Wang C, Shi F, Tu S. Chem. Eur. J. 2014; 20: 2597
- 37 Sun X, Zhang H, Li G, He Y, Shi F. Chem. Eur. J. 2016; 22: 17526
- 38 Sun X, Li C, He Y, Zhu Z, Mei G, Shi F. Adv. Synth. Catal. 2017; 359: 2660
- 39 Li C, Lu H, Sun X, Mei G, Shi F. Org. Biomol. Chem. 2017; 15: 4794
- 40 Kravina AG, Mahatthananchai J, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9433
- 41 Yetra SR, Bhunia A, Patra A, Mane MV, Vanka K, Biju AT. Adv. Synth. Catal. 2013; 355: 1089
- 42 Xie D, Yang L, Lin Y, Zhang Z, Chen D, Zeng X, Zhong G. Org. Lett. 2015; 17: 2318
- 43 Liu Q, Chen X, Li S, Rissanen K, Enders D. Adv. Synth. Catal. 2019; 361: 1991
- 44 Zhao L, Li X, Cao L, Zhang R, Shi X, Qi J. Chem. Commun. 2017; 53: 5985
- 45 Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2009; 131: 14176
- 46 Sarkar SD, Studer A. Angew. Chem. Int. Ed. 2010; 49: 9266
- 47 Zhu Z, Xiao J. Adv. Synth. Catal. 2010; 352: 2455
- 48 Rong ZQ, Jia MQ, You SL. Org. Lett. 2011; 13: 4080
- 49 Zhu Z, Zheng X, Jiang N, Wan X, Xiao J. Chem. Commun. 2011; 47: 8670
- 50 Sun F, Sun L, Ye S. Adv. Synth. Catal. 2011; 353: 3134
- 51 Yetra SR, Roy T, Bhunia A, Porwal D, Biju AT. J. Org. Chem. 2014; 79: 4245
- 52 Yetra SR, Mondal S, Suresh E, Biju AT. Org. Lett. 2015; 17: 1417
- 53 Zhao C, Guo D, Munkerup K, Huang K, Li F, Wang J. Nat. Commun. 2018; 9: 611
- 54 Sun K, Jin S, Fang S, Ma R, Zhang X, Gao M, Zhang W, Lu T, Du D. Org. Chem. Front. 2019; 6: 2291
- 55 Chan A, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 5334
- 56 Ungureanu A, Levens A, Candish L, Lupton DW. Angew. Chem. Int. Ed. 2015; 54: 11780
- 57 Xu J, Hu S, Lu Y, Dong Y, Tang W, Lu T, Du D. Adv. Synth. Catal. 2015; 357: 923
- 58 Xie Y, Wang J. Chem. Commun. 2018; 54: 4597
- 59 Ghosh A, Barik S, Biju AT. Org. Lett. 2019; 21: 8598
For selected examples, see: