Subscribe to RSS
DOI: 10.1055/s-0039-1690844
Iminyl-Radical-Triggered C–C Bond Cleavage of Cycloketone Oxime Derivatives: Generation of Distal Cyano-Substituted Alkyl Radicals and Their Functionalization
We are grateful for funding from the National Key Basic Research Program For Youth, China (Grant No. 2016YFA0602900), the National Science Foundation (NSF) of Guangdong Province for Distinguished Young Scholars (Grant No. 2016A030306029) and the National Natural Science Foundation of China (NSFC, Grant No. 21871300). T.X. thanks the NSFC (Grant No. 21801101) for financial support.Publication History
Received: 02 December 2019
Accepted after revision: 07 February 2020
Publication Date:
05 March 2020 (online)
Abstract
Alkyl nitriles are versatile building blocks in organic synthesis because the cyano group can be easily converted into other functional groups. Iminyl-radical-triggered C–C bond cleavage of cycloketone oxime derivatives provides a practical route to access distal cyano-substituted alkyl radicals, which has given chemists a new radical reaction platform for the synthesis of diverse alkyl nitriles. This review provides an overview of various types of radical cyanoalkylation via ring opening of cycloketone oxime derivatives.
1 Introduction
2 C–C Bond Formation
2.1 Alkenes as Radical Acceptors
2.2 Aromatic Rings as Radical Acceptors
2.3 Organometallic Reagents as Radical Acceptors
2.4 Cyanoalkyl-Radical-Triggered Cyclization Reactions
2.5 Miscellaneous
3 C–Heteroatom Bond Formation
3.1 C–O Bond Formation
3.2 C–N Bond Formation
3.3 C–S Bond Formation
3.4 C–Halogen Bond Formation
3.5 C–B Bond Formation
4 Conclusion
-
References
- 1a Neta P, Fessenden RW. J. Phys. Chem. 1970; 74: 3362
- 1b Hudson RF, Lawson AJ, Lucken EA. C. J. Chem. Soc., Chem. Commun. 1971; 808
- 1c Hudson RF, Lawson AJ, Record KA. F. J. Chem. Soc., Chem. Commun. 1974; 488
- 1d Griller D, Mendenhall GD, Van Hoof W, Ingold KU. J. Am. Chem. Soc. 1974; 96: 6068
- 2a Kitamura M, Narasaka K. Chem. Rec. 2002; 2: 268
- 2b Narasaka K, Kitamura M. Eur. J. Org. Chem. 2005; 4505
- 2c Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 2d Sukhorukov AY, Loffe SL. Chem. Rev. 2011; 111: 5004
- 2e Walton JC. Acc. Chem. Res. 2014; 47: 1406
- 2f Walton JC. Molecules 2016; 21: 63
- 2g Walton JC. Molecules 2016; 21: 660
- 2h Zhu X, Chiba S. Chem. Soc. Rev. 2016; 45: 4504
- 2i Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
- 2j Castle S, Jackman M, Cai Y. Synthesis 2017; 49: 1785
- 3a Davies J, Booth SG, Essafi S, Dryfe RA. W, Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
- 3b Jiang H, Studer A. Angew. Chem. Int. Ed. 2017; 56: 12273
- 3c Davies J, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 13361
- 4a Ke J, Tang Y, Yi H, Li Y, Cheng Y, Liu C, Lei A. Angew. Chem. Int. Ed. 2015; 54: 6604
- 4b Ran L, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Green Chem. 2014; 16: 112
- 5a Jiang H, Studer A. Angew. Chem. Int. Ed. 2018; 57: 1692
- 5b Shu W, Nevado C. Angew. Chem. Int. Ed. 2017; 56: 1881
- 5c Li J, Zhang P, Jiang M, Yang H, Zhao Y, Fu H. Org. Lett. 2017; 19: 1994
- 5d Ma Z.-Y, Guo L.-N, Gu Y.-R, Chen L, Duan X.-H. Adv. Synth. Catal. 2018; 360: 4341
- 5e Gu Y.-R, Duan X.-H, Chen L, Ma Z.-Y, Gao P, Guo L.-N. Org. Lett. 2019; 21: 917
- 6a Boivin J, Fouquet E, Zard SZ. J. Am. Chem. Soc. 1991; 113: 1055
- 6b Boivin J, Fouquet E, Zard SZ. Tetrahedron Lett. 1991; 32: 4299
- 6c Boivin J, Schiano A.-M, Zard SZ. Tetrahedron Lett. 1994; 35: 249
- 6d Boivin J, Fouquet E, Zard SZ. Tetrahedron 1994; 50: 1757
- 6e For selected reviews on radical-triggered C–C bond cleavage, see: Wu X, Zhu C. Chem. Rec. 2018; 18: 587
- 7a The Chemistry of the Cyano Group . Rappoport Z. John Wiley & Sons; London: 1970
- 7b Fatiadi AJ. Preparation and Synthetic Applications of Cyano Compounds. In The Chemistry of Triple-Bonded Functional Groups, Suppl. C, Part 2, Vol. 2. Patai S, Rappaport Z. John Wiley & Sons; Chichester: 1983
- 7c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 7d Wang T, Jiao N. Acc. Chem. Res. 2014; 47: 1137
- 8a Brady WT. Tetrahedron 1981; 37: 2949
- 8b Mehta G, Rao HS. P. Synth. Commun. 1985; 15: 991
- 8c Johnston BD, Slessor KN, Oehlschlager AC. J. Org. Chem. 1985; 50: 114
- 9 Nishimura T, Yoshinaka T, Nishiguchi Y, Maeda Y, Uemura S. Org. Lett. 2005; 7: 2425
- 10a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 10b Zhou L, Hossain ML, Xiao T. Chem. Rec. 2016; 16: 319
- 11a Zhang M, Xie J, Zhu C. Nat. Commun. 2018; 9: 3517
- 11b Zhang M, Yuan X.-A, Zhu C, Xie J. Angew. Chem. Int. Ed. 2019; 58: 312
- 12 Usami K, Yamaguchi E, Tada N, Itoh A. Org. Lett. 2018; 20: 5714
- 13 Jackman MM, Im S, Bohman SR, Lo CC. L, Garrity AL, Castle SL. Chem. Eur. J. 2018; 24: 594
- 14 Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 744
- 15a Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14044
- 15b Sivaguru P, Wang Z, Zanoni G, Bi X. Chem. Soc. Rev. 2019; 48: 2615
- 16a Nishimura T, Uemura S. J. Am. Chem. Soc. 2000; 122: 12049
- 16b Nishimura T, Nishiguchi Y, Maeda Y, Uemura S. J. Org. Chem. 2004; 69: 5342
- 17 Zhao B, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 12727
- 18 Yu X.-Y, Chen J.-R, Wang P.-Z, Yang M.-N, Liang D, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 57: 738
- 19 Yin Z, Rabeah J, Brückner A, Wu X.-F. ACS Catal. 2018; 8: 10926
- 20 Lou J, He Y, Li Y, Yu Z. Adv. Synth. Catal. 2019; 361: 3787
- 21 Zhao J.-F, Duan X.-H, Gu Y.-R, Gao P, Guo L.-N. Org. Lett. 2018; 20: 4614
- 22 Shen X, Zhao J.-J, Yu S. Org. Lett. 2018; 20: 5523
- 23 Li L, Chen H, Mei M, Zhou L. Chem. Commun. 2017; 53: 11544
- 24 He B.-Q, Yu X.-Y, Wang P.-Z, Chen J.-R, Xiao W.-J. Chem. Commun. 2018; 54: 12262
- 25 Yu X.-Y, Zhao Q.-Q, Chen J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 57: 15505
- 26 Chen J, He B.-Q, Wang P.-Z, Yu X.-Y, Zhao Q.-Q, Chen J.-R, Xiao W.-J. Org. Lett. 2019; 21: 4359
- 27 Yang H.-B, Selander N. Chem. Eur. J. 2017; 23: 1779
- 28 Zhao J.-F, Gao P, Duan X.-H, Guo L.-N. Adv. Synth. Catal. 2018; 360: 1775
- 29a Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 29b Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
- 29c Gao B, Zhao Y, Hu J.-Y, Hu J. Org. Chem. Front. 2015; 2: 163
- 30 Xiao T, Li L, Zhou L. J. Org. Chem. 2016; 81: 7908
- 31 He Y, Anand D, Sun Z, Zhou L. Org. Lett. 2019; 21: 3769
- 32 Xia P.-J, Ye Z.-P, Hu Y.-Z, Song D, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2019; 21: 2658
- 33 Ding D, Lan Y, Lin Z, Wang C. Org. Lett. 2019; 21: 2723
- 34 Wang P.-Z, He B.-Q, Cheng Y, Chen J.-R, Xiao W.-J. Org. Lett. 2019; 21: 6924
- 35a Minisci F, Vismara E, Fontana F. Heterocycles 1989; 28: 489
- 35b Minisci F, Fontana F, Vismara E. J. Heterocycl. Chem. 1990; 27: 79
- 35c Tauber J, Imbr D, Opatz T. Molecules 2014; 19: 16190
- 36 Gu Y.-R, Duan X.-H, Yang L, Guo L.-N. Org. Lett. 2017; 19: 5908
- 37a Ries UJ, Priepke HW. M, Hauel NH, Handschuh S, Mihm G, Stassen JM, Wienen W, Nar H. Bioorg. Med. Chem. Lett. 2003; 13: 2297
- 37b Liu R, Huang Z.-H, Murray MG, Guo X.-Y, Liu G. J. Med. Chem. 2011; 54: 5747
- 38 Yang L, Gao P, Duan X.-H, Gu Y.-R, Guo L.-N. Org. Lett. 2018; 20: 1034
- 39 Zhang W, Pan Y.-L, Yang C, Li X, Wang B. Org. Chem. Front. 2019; 6: 2765
- 40 Zhang W, Pan Y.-L, Yang C, Chen L, Li X, Cheng J.-P. J. Org. Chem. 2019; 84: 7786
- 41 Zhang W, Yang C, Zhang Z.-P, Li X, Cheng J.-P. Org. Lett. 2019; 21: 4137
- 42 Ding D, Wang C. ACS Catal. 2018; 8: 11324
- 43 Dauncey EM, Dighe SU, Douglas JJ, Leonori D. Chem. Sci. 2019; 10: 7728
- 44 Liu Z, Shen H, Xiao H, Wang Z, Zhu L, Li C. Org. Lett. 2019; 21: 5201
- 45 Wang T, Wang Y.-N, Wang R, Zhang B.-C, Yang C, Li Y.-L, Wang X.-S. Nat. Commun. 2019; 10: 5373
- 46 Chen J, Wang P.-Z, Lu B, Liang D, Yu X.-Y, Xiao W.-J, Chen J.-R. Org. Lett. 2019; 21: 9763
- 47 Wu J, Zhang J.-Y, Gao P, Xu S.-L, Guo L.-N. J. Org. Chem. 2018; 83: 1046
- 48 Zhang J.-Y, Duan X.-H, Yang J.-C, Guo L.-N. J. Org. Chem. 2018; 83: 4239
- 49 Tang Y.-Q, Yang J.-C, Wang L, Fan M, Guo L.-N. Org. Lett. 2019; 21: 5178
- 50 Yuan Y, Dong W.-H, Gao X.-S, Xie X.-M, Zhang Z.-G. Chem. Commun. 2019; 55: 11900
- 51 Wang P, Zhao B, Yuan Y, Shi Z. Chem. Commun. 2019; 55: 1971
- 52 An Z, Jiang Y, Guan X, Yan R. Chem. Commun. 2018; 54: 10738
- 53 He Y, Lou J, Wu K, Wang H, Yu Z. J. Org. Chem. 2019; 84: 2178
- 54 Yao S, Zhang K, Zhou Q.-Q, Zhao Y, Shi D.-Q, Xiao W.-J. Chem. Commun. 2018; 54: 8096
- 55 Yu X.-Y, Wang P.-Z, Yan D.-M, Lu B, Chen J.-R, Xiao W.-J. Adv. Synth. Catal. 2018; 360: 3601
- 56 Yin Z, Rabeah J, Brückner A, Wu X.-F. Org. Lett. 2019; 21: 1766
- 57 Yi Z, Zhang Z, Soulé J.-F, Dixneuf PH, Wu X.-F. J. Catal. 2019; 372: 272
- 58 Vaillant FL, Garreau M, Nicolai S, Gryn’ova G, Corminboeuf C, Waser J. Chem. Sci. 2018; 9: 5883
- 59 Ai W, Liu Y, Wang Q, Lu Z, Liu Q. Org. Lett. 2018; 20: 409
- 60 Zhao B, Chen C, Lv J, Li Z, Yuan Y, Shi Z. Org. Chem. Front. 2018; 5: 2719
- 61 Min Q.-Q, Li N, Chen G.-L, Liu F. Org. Chem. Front. 2019; 6: 1200
- 62 Tian L, Gao S, Wang R, Li Y, Tang C, Shi L, Fu J. Chem. Commun. 2019; 55: 5347
- 63 Zhao B, Wang M, Shi Z. J. Org. Chem. 2019; 84: 10145
- 64 Yang L, Zhang J.-Y, Duan X.-H, Gao P, Jiao J, Guo L.-N. J. Org. Chem. 2019; 84: 8615
- 65 Lu B, Cheng Y, Chen L.-Y, Chen J.-R, Xiao W.-J. ACS Catal. 2019; 9: 8159
- 66 He M, Yan Z, Zhu F, Lin S. J. Org. Chem. 2018; 83: 15438
- 67 Anand D, He Y, Li L, Zhou L. Org. Biomol. Chem. 2019; 17: 533
- 68 Zhou X.-S, Cheng Y, Chen J, Yu X.-Y, Xiao W.-J, Chen J.-R. ChemCatChem 2019; 11: 5300
- 69 Zhang J, Li X, Xie W, Ye S, Wu J. Org. Lett. 2019; 21: 4950
- 70 Zheng M, Li G, Lu H. Org. Lett. 2019; 21: 1216
- 71 Zhang J.-J, Duan X.-H, Wu Y, Yang J.-C, Guo L.-N. Chem. Sci. 2019; 10: 161