Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(18): 2086-2090
DOI: 10.1055/s-0039-1690988
DOI: 10.1055/s-0039-1690988
letter
Hydrogen-Bond-Promoted Metal-Free Hydroamination of Alkynes
Financial support from ANR CD2I (Agence Nationale de la Recherche), IUF, and CNRS is acknowledged. The authors thank the FRQNT Centre in Green Chemistry and Catalysis (CGCC) Strategic Cluster FRQNT-2020-RS4-265155-CCVC.Further Information
Publication History
Received: 07 August 2019
Accepted after revision: 09 September 2019
Publication Date:
07 October 2019 (online)
Abstract
An original metal-free regio- and stereoselective intermolecular hydroamination of alkynes is described. Various (E)-enamines were obtained from arylacetylenes and aliphatic secondary amines in the presence of ethylene glycol as a solvent. The latter is assumed to play a major role in the mechanism through hydrogen bonding and proton exchange.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690988.
- Supporting Information
-
References and Notes
- 2a Glisan King A, Meinwald J. Chem. Rev. 1996; 96: 1105
- 2b Mitchinson A, Nadin A. J. Chem. Soc., Perkin Trans. 1 2000; 1: 2862
- 3a Enamines: Synthesis Structure and Reactions, 2nd ed. Cook AG. Dekker; New York: 1988
- 3b Kuckländer U. In The Chemistry of Enamines, Part 1 . Rappoport Z. Wiley; Chichester: 1994: 523
- 3c Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
- 3d Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 4a Müller TE, Beller M. Chem. Rev. 1998; 98: 675
- 4b Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
- 4c Hartwig JF. Pure Appl. Chem. 2004; 76: 507
- 4d Chemler S. Org. Biomol. Chem. 2009; 7: 3009
- 4e Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ. Chem. Rev. 2015; 115: 2596
- 4f Bernoud E, Lepori C, Mellah M, Schulz E, Hannedouche J. Catal. Sci. Technol. 2015; 5: 2017
- 4g Evano G, Gaumont A.-C, Alayrac C, Wrona IE, Giguere JR, Delacroix O, Bayle A, Jouvin K, Theunissen C, Gatignol J, Silvanus AC. Tetrahedron 2014; 70: 1529
- 4h Schafer LL, Yim JC. H, Yonson N. In Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014. Chap. 15, 1135
- 5a Hong S, Marks TJ. Acc. Chem. Res. 2004; 37: 673
- 5b Severin R, Doye S. Chem. Soc. Rev. 2007; 36: 1407
- 5c Gils RL, Sullivan JD, Steiner AM, Looper RE. Angew. Chem. Int. Ed. 2009; 48: 3116
- 5d Reznichenko AL, Hultzsch KC. Organometallics 2013; 32: 1394
- 6a Leitch DC, Turner CS, Shafer LL. Angew. Chem. Int. Ed. 2010; 49: 6382
- 6b Sarma R, Prajapati D. Chem. Commun. 2011; 47: 9525
- 6c Brinkmann C, Barrett AG. M, Hill MS, Procopiou PA. J. Am. Chem. Soc. 2012; 134: 2193
- 6d Liu B, Roisnel T, Carpentier JF, Sarazin Y. Chem. Eur. J. 2013; 19: 13445
- 7a Moran J, Cebrowski PH, Beauchemin AM. J. Org. Chem. 2008; 73: 1004
- 7b Rizk T, Bilodeau EJ. F, Beauchemin AM. Angew. Chem. Int. Ed. 2009; 48: 8325
- 7c Ackermann L, Kozhushkov SI, Yufit DS, Marek I. Synlett 2011; 1515
- 7d Fleisher S, Werkeister S, Zhou S, Junge K, Beller M. Chem. Eur. J. 2012; 18: 9005
- 7e Lin J.-S, Yu P, Huang L, Zhang P, Tan B, Liu X.-Y. Angew. Chem. Int. Ed. 2015; 54: 7847
- 8a Tzalis D, Koradin C, Knochel P. Tetrahedron Lett. 1999; 40: 6193
- 8b Rodriguez AL, Koradin C, Dohle W, Knochel P. Angew. Chem. Int. Ed. 2000; 39: 2488
- 8c Imahori T, Hori C, Kondo Y. Adv. Synth. Catal. 2004; 346: 1090
- 8d Alsabesh PG, Lundgren RJ, Longobardi LE, Stradiotto M. Chem. Commun. 2011; 47: 6936
- 8e Patel M, Saunthawal RK, Verma AK. Tetrahedron Lett. 2014; 55: 1310
- 8f Patel M, Saunthwal RK, Verma AK. Acc. Chem. Res. 2017; 50: 240
- 9a Doucet H, Bruneau C, Dixneuf PH. Synlett 1997; 807
- 9b Leitch DC, Payne PR, Dunbar CR, Schafer LL. J. Am. Chem. Soc. 2009; 131: 18246
- 9c Kocięcka P, Czcluśniak I, Szymańska-Buzar T. Adv. Synth. Catal. 2014; 356: 3319
- 9d Slagbrand T, Vockov A, Trillo P, Tinnis F, Adolfsson H. ACS Catal. 2017; 7: 1771
- 10a Shimada T, Yamamoto Y. J. Am. Chem. Soc. 2002; 124: 12670
- 10b Salman GA, Hussain M, Iaroshenko V, Villinger A, Langer P. Adv. Synth. Catal. 2011; 353: 331
- 10c Bernhammer JC, Chong NX, Jothibasu R, Zhou B, Huynh HV. Organometallics 2014; 33: 3607
- 10d Banerjee D, Junge K, Beller M. Angew. Chem. Int. Ed. 2014; 53: 1630 ; Corrigendum: Angew. Chem. Int. Ed. 2017, 56, 16436
- 10e Lhristodoulou MS, Giofrè S, Broggini G, Mazza A, Sala R, Beccalli EM. Eur. J. Org. Chem. 2018; 6176
- 10f Park S, Malcolmson SJ. ACS Catal. 2018; 8: 8468
- 11a Fukumoto Y, Asai H, Shimizu M, Chatani N. J. Am. Chem. Soc. 2007; 129: 13792
- 11b Utsusomiya M, Kuwano R, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 5608
- 11c Shen X, Buchwald SL. Angew. Chem. Int. Ed. 2010; 49: 564
- 11d Sakai K, Kochi T, Kakiuchi F. Org. Lett. 2011; 13: 3928
- 11e Takano S, Kochi T, Kakiuchi F. Organometallics 2016; 35: 4112
- 11f Yang X.-H, Lu A, Dong VM. J. Am. Chem. Soc. 2017; 139: 14049
- 11g Athira C, Changotra A, Sunoj RB. J. Org. Chem. 2018; 83: 2627
- 11h Yang S, Li Q, Xu C, Xu Q, Shi M. Chem. Sci. 2018; 9: 5074
- 12a Kang J.-E, Kim H.-B, Lee J.-W, Shin S. Org. Lett. 2006; 8: 3537
- 12b Lavallo V, Frey GD, Donnadieu B, Soleilhavoup M, Bertrand G. Angew. Chem. Int. Ed. 2008; 47: 5224
- 12c Zeng X, Frey GD, Kinjo R, Donnadieu B, Bertrand G. J. Am. Chem. Soc. 2009; 131: 8690
- 12d Couce-Rios A, Kovács G, Ujaque G, Lledós A. ACS Catal. 2015; 5: 815
- 12e Timmerman JC, Robertson BD, Widenhoefer RA. Angew. Chem. Int. Ed. 2015; 54: 2251
- 12f Wang Y, Ling B, Li P, Bi S. Organometallics 2018; 37: 3035
- 12g Liu D, Nie Q, Zhang R, Cai M. Adv. Synth. Catal. 2018; 360: 3940
- 12h Baron M, Battistel E, Tubaro C, Biffis A, Armelao L, Ramcan M, Graiff C. Organometallics 2018; 37: 4213
- 13a Stephens RD, Castro CE. J. Org. Chem. 1963; 28: 2163
- 13b Stephens RD, Castro CE. J. Org. Chem. 1963; 28: 3313
- 13c Kimura M, Kure S, Yoshida Z, Tanaka S, Fugami K, Tamaru Y. Tetrahedron Lett. 1990; 31: 4887
- 14a Zhou L, Bohle DS, Jiang H.-F, Li C.-J. Synlett 2009; 937
- 14b Robbins DW, Hartwig JF. Science 2011; 333: 1423
- 14c Shi S.-L, Buchwald SL. Nat. Chem. 2015; 7: 38
- 15 Bahri J, Jamoussi B, Lee AV. D, Taillefer M, Monnier F. Org. Lett. 2015; 17: 1224
- 16 Bahri J, Blieck R, Jamoussi B, Taillefer M, Monnier M. Chem. Commun. 2015; 51: 11210
- 17a Beauchemin AM, Moran J, Lebrun M.-E, Séguin C, Dimitrijevic E, Zhang L, Gorelsky SI. Angew. Chem. Int. Ed. 2008; 47: 1410
- 17b Cebrowski PH, Roveda JG, Moran J, Gorelsky SI, Beauchemin AM. Chem. Commun. 2008; 492
- 17c Moran J, Gorelsky SI, Dimitrijevic E, Lebrun ME, Bédard A.-C, Séguin C, Beauchemin AM. J. Am. Chem. Soc. 2008; 130: 17893
- 17d Moran J, Pfeiffer JY, Gorelsky SI, Beauchemin AM. Org. Lett. 2009; 11: 1895
- 17e Loiseau F, Clavette C, Raymond M, Roveda JG, Beauchemin AM. Chem. Commun. 2011; 47: 562
- 17f Bourgeois J, Dion I, Cebrowski PH, Loiseau F, Bédard A.-C, Beauchemin AM. J. Am. Chem. Soc. 2009; 131: 874
- 17g Zhao S.-B, Bilodeau E, Lemieux V, Beauchemin AM. Org. Lett. 2012; 14: 5082
- 17h Beauchemin AM. Org. Biomol. Chem. 2013; 11: 7039
- 18 For a metal-free intermolecular hydroamidation of ynamides with N-sulfonamides, see: Peng Z, Zhang Z, Tu Y, Zeng X, Zhao J. Org. Lett. 2018; 20: 5688
- 19 Clarke CJ, Tu W.-C, Levers O, Bröhl A, Hallett JP. Chem. Rev. 2018; 118: 747
- 20 It is also possible to recover the unused amine in a cold trap and then totally recycle it.
- 21 Propargyl alcohol and oct-1-yne have also been tested; however, no product was obtained. This probably demonstrates that the solvent is the sole source of hydrogen bonding.
- 22 Hydroamination of Alkynes with Amines; General Procedure Under an atmosphere of argon, a screw-cap vial was charged with ethylene glycol (250 μL, 8.9 equiv) and the appropriate alkyne (0.5 mmol, 1 equiv) and amine (2.5 mmol) at r.t. The tube was sealed under a positive pressure of argon and the mixture was stirred and heated to 150 °C for 8 h. The mixture was cooled to r.t., diluted with EtOAc (5 mL), and washed with H2O (3 × 2 mL) and brine (1 × 2 mL). The organic phase was dried (MgSO4), filtered, and concentrated under reduced pressure (rotary evaporator). Excess amine was then removed from the residue under high vacuum to give the desired enamine without any need for further purification. In the case of amines with high boiling points, such as dibutylamine or dipentylamine, the residues were dried by heating to 50 °C under high vacuum. (E)-N,N-Dipentyl-2-phenylethylenamine (3b) Solid; yield: 97 mg (75%). 1H NMR (400 MHz, CDCl3): δ = 7.20–7.14 (m, 4 H), 6.95–6.92 (m, 1 H), 6.76 (d, J = 14 Hz, 1 H), 5.07 (d, J = 14 Hz, 1 H), 3.07 (t, J = 7.1 Hz, 4 H), 1.60–1.54 (m, 4 H), 1.39–1.33 (m, 4 H), 1.33–1.28 (m, 4 H), 0.92 (t, J = 7.2 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 140.4, 138.5, 128.5, 123, 122.5, 96.3, 51.7, 29.2, 27.6, 22.5, 14.1. HRMS (ESI-TOF): m/z [M + H]+ Calcd for C18H30N: 260.2300; found: 260.2301.
For reviews on hydroamination, see:
For Pd-catalyzed hydroamination, see:
For Rh-catalyzed hydroamination, see:
For Au-catalyzed hydroamination, see:
Beauchemin’s group has recently developed a series of Cope-type hydroaminations of alkenes and alkynes; see: