Synlett 2020; 31(06): 553-558
DOI: 10.1055/s-0039-1691533
cluster
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Neber Reaction in the Synthesis of Chiral 2-(Tetrazol-5-yl)-2H-Azirines

a   CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal, Email: tmelo@ci.uc.pt
,
a   CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal, Email: tmelo@ci.uc.pt
,
b   Centro de Química de Évora and Department of Chemistry, University of Évora, 7000 Évora, Portugal
c   HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
,
d   CFisUC and Department of Physics, University of Coimbra, Coimbra 3004-516, Portugal
,
a   CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal, Email: tmelo@ci.uc.pt
,
b   Centro de Química de Évora and Department of Chemistry, University of Évora, 7000 Évora, Portugal
,
a   CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal, Email: tmelo@ci.uc.pt
e   FCT, University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal
,
a   CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal, Email: tmelo@ci.uc.pt
› Author Affiliations
The Coimbra Chemistry Centre (CQC) is supported by the Portuguese Agency for Scientific Research, ‘Fundação para a Ciência e a Tecnologia’ (FCT), through Project UID/QUI/00313/2019. Carla Grosso acknowledges FCT for the PhD research grant SFRH/BD/130198/2017 and Cláudia C. Alves for the PhD research grant PD/BD/143159/2019. The Evora Chemistry Centre (CQE) received funding through the strategic FCT project Pest-OE/QUI/UI0619/2019.
Further Information

Publication History

Received: 14 October 2019

Accepted after revision: 27 November 2019

Publication Date:
17 December 2019 (online)


Published as part of the ISySyCat2019 Special Issue

Abstract

A successful one-pot methodology for the synthesis of chiral 2-tetrazolyl-2H-azirines has been established, resorting to organocatalysis. The protocol involves the in situ tosylation of β-ketoxime-1H-tetrazoles followed by the Neber reaction, in the presence of chiral organocatalysts. Among the organocatalysts studied a novel thiourea catalyst derived from 6β-aminopenicillanic acid afforded excellent enantioselectivities.

Supporting Information

 
  • References and Notes

  • 1 Khlebnikov AF, Norikov MS, Rostovskii NV. Tetrahedron 2019; 75: 2555
  • 2 Khlebnikov AF, Novikov MS. Tetrahedron 2013; 69: 3363
  • 3 Khlebnikov AF, Novikov MS. Ring Expansions of Azirines and Azetines . In Topics in Heterocylicic Chemistry . Maes BU. W, Cossy J, Slovenko P. Springer; Berlin: 2015: 1
  • 4 Pinho e Melo TM. V. D, Rocha Gonsalves A. M. dA. Curr. Org. Synth. 2004; 1: 275
  • 5 Palacios F, de Retana AM. O, de Marigorta EM, de los Santos JM. Eur. J. Org. Chem. 2001; 13: 2401
  • 6 Padwa A. Cycloaddition and Cyclization Chemistry of 2H-Azirines. In Advances in Heterocyclic Chemistry, Vol. 99. Katritzky AR. Elsevier; Amsterdam: 2010: 31
  • 7 Padwa A. Aziridines and Azirines: Monocyclic . In Comprehensive Heterocyclic Chemistry III, Vol. 1 . Katritzky AR. Elsevier; Amsterdam: 2008: 104
  • 8 Miller TW, Tristram EW, Wolf FJ. J. Antibiot. 1971; 24: 48
  • 9 Molinski TF, Ireland CM. J. Org. Chem. 1988; 53: 2103
  • 11 Sakamoto S, Inokuma T, Takemoto Y. Org. Lett. 2011; 13: 6374
  • 15 Cardoso AL, Henriques MS. C, Paixão JA, Pinho e Melo TM. V. D. J. Org. Chem. 2016; 81: 9028
  • 16 Cardoso AL, Sousa C, Henriques MS. C, Paixão JA, Pinho e Melo TM. V. D. Molecules 2015; 20: 22351
  • 17 Jorda R, Lopes SM. M, Řezníčková E, Kryštof V, Pinho e Melo TM. V. D. ChemMedChem 2017; 12: 701
  • 18 Panice MR, Lopes SM. M, Figueiredo MC, Ruiz AL. T. G, Foglio M. -A, Sarragiotto MH, Pinho e Melo TM. V. D. Eur. J. Med. Chem. 2019; 179: 123
  • 19 Cardoso AL, Gimeno L, Lemos A, Palacios F, Pinho e Melo TM. V. D. J. Org. Chem. 2013; 78: 6983
  • 20 Cardoso AL, Lemos A, Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2014; 5159
  • 21 General Procedure for the Optimized Asymmetric Synthesis of 2H-azirines 7, 14a, and 14b To a solution of the appropriate β-ketoxime 5 or 13a,b (0.15 mmol), K2CO3 (1.50 mmol, 10 equiv), and tosyl chloride (0.17 mmol, 1.1 equiv) in toluene (4 mL) under a nitrogen atmosphere was added the organocatalyst (18 or 20 mol%) in toluene (1 mL). The mixture was stirred for 48 h at the appropriate temperature. The solvent was evaporated under reduced pressure, and the crude reaction was dissolved in ethyl acetate (20 mL) and washed with water (3 × 10 mL). The organic layer was dried over anhydrous Na2SO4 and filtered, and the solvent was evaporated under vacuum. The crude product was purified by flash chromatography (ethyl acetate/hexane, 1:1). The characterization data for 7, 14a, and 14b agreed with those previously reported.19
  • 23 Rolinson GN, Geddes AM. Int. J. Antimicrob. Agents 2007; 29: 3
  • 24 Emer E, Galleti P, Giacomini D. Eur. J. Org. Chem. 2009; 29: 3155
  • 25 Sheehan JC, Commons TJ. J. Org. Chem. 1978; 11: 2203
  • 26 Procedure for the Synthesis of (2S,6R)-Benzhydryl 6β-{3-[3,5-bis(trifluoromethyl)phenyl] thioureido}-aminopenicillanate (12) To a solution of benzhydryl 6β-aminopenicillanate 10b (1.94 mmol, 0.74 g) under inert atmosphere in dry THF (3.5 mL) was added dropwise 3,5-bis(trifluoromethyl)phenyl isothiocyanate (11, 1.94 mmol, 0.35 mL). After stirring for 3 h at room temperature, the solvent was evaporated, and the crude product was purified by flash chromatography (eluting with ethyl acetate/hexane, 1:2) and recrystallized with diethyl ether/hexane; yield 48%; white solid; mp 77.0–78.0 °C. IR (KBr): ν = 682, 697, 1128, 1251, 1175, 1276, 1491, 1735, 2968, 2933, 3032, 3066, 3271, 3291 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.93 (s, 1 H), 7.84 (s, 2 H), 7.50 (s, 1 H), 7.35–7.31 (m, 11 H), 6.96 (s, 1 H), 5.19 (d, J = 2 Hz, 1 H), 4.25 (dd, J = 3.2 Hz and J = 1.2 Hz, 1 H), 3.92 (s, 1 H), 1.64 (s, 3 H), 1.00 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 182.8, 170.6, 167.3, 139.1, 138.9, 133.9, 132.4 (q, J = 34.0 Hz, 2 C), 128.8, 128.9, 128.6, 128.5, 128.2, 127.9, 127.7, 126.9, 126.8, 126.6, 124.1, 122.9 (m, 1 C), 121.4, 78.7, 73.3, 66.5, 65.5, 65.1, 60.6, 26.3, 26.1 ppm. 19F NMR (376 MHz CDCl3): δ = 62.8 (s, 6 F). HRMS (ESI): m/z calcd for C30H26F6N3O3S2 [MH+]: 654.1314; found: 654.1301.