Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(07): 1067-1075
DOI: 10.1055/s-0039-1691541
DOI: 10.1055/s-0039-1691541
paper
Catalyst-Free Synthesis of 1,4-Dihydroquinolines and Pyrrolo[1,2-a]quinolines via Intermolecular [4+2]/[3+2] Radical Cyclization of N-Methylanilines with Alkynoates
This work was supported by the University Natural Science Research Project of Anhui Province (No. KJ2019A0116) and the Natural Science Foundation of Anhui Province (No. 1608085MB38).Further Information
Publication History
Received: 20 October 2019
Accepted after revision: 29 November 2019
Publication Date:
02 January 2020 (online)
Abstract
Intermolecular [4+2]/[3+2] radical annulation of N-methylanilines with alkynoates under metal- and photoredox-catalyst-free conditions provides a practical and efficient method to synthesize bioactive 1,4-dihydroquinolines and pyrrolo[1,2-a]quinolines in one pot in moderate to high overall yields.
Key words
catalyst-free - radical reaction - [4+2]/[3+2] cyclization - 1,4-dihydroquinolines - pyrrolo[1,2-a]quinolinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691541.
- Supporting Information
-
References
- 1a Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157
- 1b Bharate JB, Vishwakarma RA, Bharate SB. RSC Adv. 2015; 5: 42020
- 2a Janis RA, Silverand PJ, Triggle DJ. Adv. Drug Res. 1987; 16: 309
- 2b Bossert F, Vater W. Med. Res. Rev. 1989; 9: 291
- 2c Bossert F, Meyer H, Wehinger E. Angew. Chem. Int. Ed. 1981; 20: 762
- 2d Mentese MY, Bayrak H, Uygun Y, Mermer A, Ulker S, Karaoglu SA, Demirbas N. Eur. J. Med. Chem. 2013; 67: 230
- 2e Mistry SN, Valant C, Sexton PM, Capuano B, Christopoulos A, Scammells PJ. J. Med. Chem. 2013; 56: 5151
- 3 Sonnenschein H, Hennrich G, Resch-Genger U, Schulz B. Dyes Pigm. 2000; 46: 23
- 4a Anderson WK, Heider AR, Raju N, Yucht JA. J. Med. Chem. 1988; 31: 2097
- 4b Kemnitzer W, Kuemmerle J, Jiang S.-C, Sirisoma N, Kasibhatla S, Crogan-Grundy C, Tseng B, Drewe J, Cai S.-X. Bioorg. Med. Chem. Lett. 2009; 19: 3481
- 4c Hazra A, Mondal S, Maity A, Naskar S, Saha P, Paira R, Sahu KB, Paira P, Ghosh S, Sinha C, Samanta A, Banerjee S, Mondal NB. Eur. J. Med. Chem. 2011; 46: 2132
- 5 Fan H, Peng J.-N, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
- 6 Viault G, Greé D, Roisnel T, Chandrasekhar S, Greé R. Tetrahedron 2009; 65: 10149
- 7a Yu M, Kim S.-G. Tetrahedron Lett. 2015; 56: 4159
- 7b Kim H, Kim S.-G. Tetrahedron Lett. 2015; 56: 4819
- 7c Lee Y, Kim S.-G. J. Org. Chem. 2014; 79: 8234
- 8a Watanabe T, Oishi S, Fujii N, Ohno H. Org. Lett. 2007; 9: 4821
- 8b Wu X.-J, Xu X.-P, Su X.-M, Chen G, Zhang Y, Ji S.-J. Eur. J. Org. Chem. 2009; 4963
- 9 Kim JN, Kim HS, Gong JH, Chung YM. Tetrahedron Lett. 2001; 42: 8341
- 10 Chu X.-Q, Zi Y, Meng H, Xu X.-P, Ji S.-J. Org. Biomol. Chem. 2014; 12: 4243
- 11a Pearson WH, Fang W.-K. J. Org. Chem. 2000; 65: 7158
- 11b Wei L.-L, Hsung RP, Sklenicka HM, Gerasyuto AI. Angew. Chem. Int. Ed. 2001; 40: 1516
- 11c Santarem M, Vanucci-Bacqué C, Lhommet G. J. Org. Chem. 2008; 73: 6466
- 11d Wu F.-S, Zhao H.-Y, Xu Y.-L, Hu K, Pan Y.-M, Ma X.-L. J. Org. Chem. 2017; 82: 4289
- 12a Aggarwal T, Jha RR, Tiwari RK, Kumar S, Kotla SK. R, Kumar S, Verma AK. Org. Lett. 2012; 14: 5184
- 12b Verma AK, Kotla SK. R, Aggarwal T, Kumar S, Nimesh H, Tiwari RK. J. Org. Chem. 2013; 78: 5372
- 12c Yang Y.-Z, Xie C.-S, Xie Y.-J, Zhang Y.-H. Org. Lett. 2012; 14: 957
- 12d Albaladejo MJ, Alonso F, Yus M. Chem. Eur. J. 2013; 19: 5242
- 12e Liu R.-R, Hong J.-J, Lu C.-J, Xu M, Gao J.-R, Jia Y.-X. Org. Lett. 2015; 17: 3050
- 12f Yu Y, Liu Y, Liu A.-X, Xie H.-X, Li H, Wang W. Org. Biomol. Chem. 2016; 14: 7455
- 12g Wu L, Sun J, Yan C.-G. Chin. J. Chem. 2012; 30: 590
- 12h Shen B.-X, Li B, Wang B.-Q. Org. Lett. 2016; 18: 2816
- 12i Wang X, Li S.-Y, Pan Y.-M, Wang H.-S, Liang H, Chen Z.-F. Org. Lett. 2014; 16: 580
- 13 Orejarena JC, Gómez SL, Palma A, Cobo J, Nogueras M. Synlett 2014; 25: 243
- 14a Bakshi D, Singh A. Asian J. Org. Chem. 2016; 5: 70
- 14b Mao Z.-J, Li X.-J, Lin X.-F, Lu P, Wang Y.-G. Tetrahedron 2012; 68: 85
- 14c Li F.-L, Chen J.-F, Hou Y.-D, Li Y.-J, Wu X.-Y, Tong X.-F. Org. Lett. 2015; 17: 5376
- 15a Ackermann L. Chem. Rev. 2011; 111: 1315
- 15b Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
- 15c Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
- 15d Roesky PW. Angew. Chem. Int. Ed. 2009; 48: 4892
- 16a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 16b Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 16c Scheuermann CJ. Chem. Asian J. 2010; 5: 436
- 16d Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 17a Pandey G, Kumaraswamy G. Tetrahedron Lett. 1988; 29: 4153
- 17b Pandey G, Sudha RaniK, Lakshamaiah G. Tetrahedron Lett. 1992; 33: 5107
- 18a Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
- 18b Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Chem. Commun. 2011; 47: 2360
- 18c Sud A, Sureshkumar D, Klussmann M. Chem. Commun. 2009; 3169
- 18d Yang F, Li J, Xie J, Huang Z.-Z. Org. Lett. 2010; 22: 5214
- 18e Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
- 18f Wang M.-Z, Zhou C.-Y, Wong M.-K, Che C.-M. Chem. Eur. J. 2010; 16: 5723
- 18g Shirakawa E, Uchiyama N, Hayashi T. J. Org. Chem. 2011; 76: 25
- 19a Baciocchi E, Bietti M, Gerini MF, Lanzalunga O. J. Org. Chem. 2005; 70: 5144
- 19b Liang Z, Xu S, Tian W, Zhang R. Beilstein J. Org. Chem. 2015; 11: 425
- 19c Fava E, Millet A, Nakajima M, Loescher S, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 6776
- 19d Chen L, Chao CS, Pan Y, Dong S, Teo YC, Wang J, Tan C.-H. Org. Biomol. Chem. 2013; 11: 5922
- 19e Miyake Y, Nakajima K, Nishibayashi Y. Chem. Eur. J. 2012; 18: 16473
- 19f Miyake Y, Nakajima K, Nishibayashi Y. J. Am. Chem. Soc. 2012; 134: 3338
- 19g Zhu S, Das A, Bui L, Zhou H, Curran DP, Rueping M. J. Am. Chem. Soc. 2013; 135: 1823
- 19h Zhou H, Lu P, Gu X, Li P. Org. Lett. 2013; 15: 5646
- 20a Yadav AK, Yadav LD. S. Tetrahedron Lett. 2016; 57: 1489
- 20b Yadav AK, Yadav LD. S. Tetrahedron Lett. 2017; 58: 552
- 20c Guo J.-T, Yang D.-C, Guan Z, He Y.-H. J. Org. Chem. 2017; 82: 1888
- 20d Ju X, Li D, Li W, Yu W, Bian F. Adv. Synth. Catal. 2012; 354: 3561
- 20e Yadav AK, Yadav LD. S. Chem. Commun. 2016; 52: 10621
- 20f Nishino M, Hirano K, Satoh T, Miura M. J. Org. Chem. 2011; 76: 6447
- 20g Firoozi S, Hosseini-Sarvari M, Koohgard M. Green Chem. 2018; 20: 5540
- 21a Zhang P, Xiao T, Xiong S, Dong X, Zhou L. Org. Lett. 2014; 16: 3264
- 21b Pandey G, Dumbre SG, Pal S, Khan MI, Shabab M. Tetrahedron 2007; 63: 4756
- 21c Pandey G, Bharadwaj KC, Khan MI, Shashidhara KS, Puranik VG. Org. Biomol. Chem. 2008; 6: 2587
- 22 Zheng Y, Mao J, Chen J, Rong G, Liu D, Yan H, Chia Y, Xu X. RSC Adv. 2015; 5: 50113
- 23 Wagner A, Han W, Mayer P, Ofial AR. Adv. Synth. Catal. 2013; 355: 3058
- 24 Sueki S, Kuninobu Y. Org. Lett. 2013; 15: 1544
- 25 Lee O.-Y, Law K.-L, Ho C.-Y, Yang D. J. Org. Chem. 2008; 73: 8829
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected pioneering work in the field of photocatalyzed generation of iminium ions, see:
For selected examples, see:
Selected articles on the use of α-aminoalkyl radicals generated from N-methylanilines in synthesis, see:
For selected examples, see: