Synthesis 2021; 53(07): 1365-1371
DOI: 10.1055/s-0040-1705967
paper

DEAD-Mediated Oxidative Ugi/Aza-Wittig Reaction for the Synthesis of 5-(1,2,3,4-Tetrahydroisoquinolin-1-yl)-1,3,4-oxadi­­azoles Starting from (N-Isocyanimine)triphenylphosphorane

Mei Sun
,
Long Zhao
,
Yan-Ling Yu
,
Ming-Wu Ding
We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (No. 21572075) and the 111 Project B17019.


Abstract

A one-pot protocol for the synthesis of 5-(1,2,3,4-tetra­hydroisoquinolin-1-yl)-1,3,4-oxadiazoles via DEAD-mediated oxidative Ugi/aza-Wittig reaction has been developed. The reaction of (N-iso­cyanimine)triphenylphosphorane, carboxylic acids, and N-aryl-1,2,3,4-tetrahydroisoquinolines produced polysubstituted 5-(1,2,3,4-tetra­hydroisoquinolin-1-yl)-1,3,4-oxadiazoles directly in good yields in the presence of DEAD as an oxidant.

Supporting Information



Publication History

Received: 09 September 2020

Accepted after revision: 08 October 2020

Article published online:
10 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Amir M, Saifullah K, Akhter W. J. Enzym. Inhib. Med. Chem. 2011; 26: 141
    • 1b Hwang JY, Choi HS, Lee DH, Gong YD. J. Comb. Chem. 2005; 7: 816
    • 2a Abdildinova A, Yang SJ, Gong YD. Tetrahedron 2018; 74: 684
    • 2b Kanchana SN, Burra V, Nath LK. R. Orient. J. Chem. 2014; 30: 1349
  • 3 Salahuddin, Shaharyar M, Mazumder A, Ahsan MJ. Arab. J. Chem. 2014; 7: 418
  • 4 Aksenov AV, Khamraev V, Aksenov NA, Kirilov NK, Domenyuk DA, Zelensky VA, Rubin M. RSC Adv. 2019; 9: 6636
  • 5 Wang SC, Wang K, Kong XF, Zhang SH, Jiang GB, Ji FH. Adv. Synth. Catal. 2019; 361: 3986
  • 6 Maghari S, Ramezanpour S, Darvish F, Balalaie S, Rominger F, Bijanzadeh HR. Tetrahedron 2013; 69: 2075
    • 7a Andersen TL, Caneschi W, Ayoub A, Lindhardt AT, Couri MR. C, Skrydstrup T. Adv. Synth. Catal. 2014; 356: 3074
    • 7b Fang T, Tan QT, Ding ZW, Liu BX, Xu B. Org. Lett. 2014; 16: 2342
    • 7c Guin S, Ghosh T, Rout SK, Banerjee A, Patel BK. Org. Lett. 2011; 13: 5976
    • 7d Li ZY, Wang L. Adv. Synth. Catal. 2015; 357: 3469
    • 7e Jiang QQ, Qi XH, Zhang CY, Ji X, Li J, Liu RH. Org. Chem. Front. 2018; 5: 386
    • 7f Gómez Saiz P, García Tojal J, Maestro MA, Arnaiz FJ, Rojo T. Inorg. Chem. 2002; 41: 1345
    • 8a Tokumaru K, Bera K, Johnston JN. Synthesis 2017; 49: 4670
    • 8b Wang Q, Mgimpatsang KC, Konstantinidou M, Shishkina SV, Dömling A. Org. Lett. 2019; 21: 7320
    • 8c Gao QH, Liu S, Wu X, Zhang JJ, Wu AX. Org. Lett. 2015; 17: 2960
    • 8d Yang SJ, Lee SH, Kwak HJ, Gong YD. J. Org. Chem. 2013; 78: 438
    • 8e Niu PF, Kang JF, Tian XH, Song LN, Liu HX, Wu J, Yu WQ, Chang JB. J. Org. Chem. 2015; 80: 1018
    • 8f Chauhan J, Ravva MK, Sen S. Org. Lett. 2019; 21: 6562
  • 9 Bentley KW. Nat. Prod. Rep. 2006; 23: 444
  • 10 Zhang A, Neumeyer JL, Baldessarini RJ. Chem. Rev. 2007; 107: 274
    • 11a Ye X, Xie CS, Pan YY, Han LH, Xie T. Org. Lett. 2010; 12: 4240
    • 11b Chen YY, Feng GF. Org. Biomol. Chem. 2015; 13: 4260
    • 11c Singh K, Kaur A, Mithu VS, Sharma S. J. Org. Chem. 2017; 82: 5285
    • 11d Jiang GX, Chen J, Huang JS, Che CM. Org. Lett. 2009; 11: 4568
    • 11e Dong CP, Uematsu A, Kumazawa S, Yamamoto Y, Kodama S, Nomoto A, Ueshima M, Ogawa A. J. Org. Chem. 2019; 84: 11562
  • 12 Ngouansavanh T, Zhu JP. Angew. Chem. Int. Ed. 2007; 46: 5775
  • 13 Wang JK, Sun YL, Wang GJ, Zhen L. Eur. J. Org. Chem. 2017; 6338
  • 14 Wang JK, Sun YL, Jiang MH, Hu TY, Zhao YJ, Li X, Wang GJ, Hao K, Zhen L. J. Org. Chem. 2018; 83: 13121
    • 15a Baslé O, Li CJ. Green Chem. 2007; 9: 1047
    • 15b Rueping M, Vila C. Org. Lett. 2013; 15: 2092
    • 15c Vila C, Rueping M. Green Chem. 2013; 15: 2056
    • 15d Kumar RA, Saidulu G, Prasad KR, Kumar GS, Sridhar B, Reddy KR. Adv. Synth. Catal. 2012; 354: 2985
    • 15e Shu XZ, Xia XF, Yang YF, Ji KG, Liu XY, Liang YM. J. Org. Chem. 2009; 74: 7464
    • 15f Franz JF, Kraus WB, Zeitler K. Chem. Commun. 2015; 51: 8280
    • 15g Xie ZY, Liu L, Chen WF, Zheng HB, Xu QQ, Yuan HQ, Lou HX. Angew. Chem. Int. Ed. 2014; 53: 3904
    • 15h Chen Q, Zhou JW, Wang YN, Wang C, Liu XH, Xu ZQ, Lin L, Wang R. Org. Lett. 2015; 17: 4212
    • 15i Ambule MD, Tripathi S, Ghoshal A, Srivastava AK. Chem. Commun. 2019; 55: 10872
    • 16a Li ZP, Li CJ. J. Am. Chem. Soc. 2005; 127: 6968
    • 16b Meng QY, Zhong JJ, Liu Q, Gao XW, Zhang HH, Lei T, Li ZJ, Feng K, Chen B, Tung CH, Wu LZ. J. Am. Chem. Soc. 2013; 135: 19052
    • 17a Giustiniano M, Basso A, Mercalli V, Massarotti A, Novellino E, Tron GC, Zhu J. Chem. Soc. Rev. 2017; 46: 1295
    • 17b Gulevich AV, Zhdanko AG, Orru RV. A, Nenajdenko VG. Chem. Rev. 2010; 110: 5235
    • 19a Ramazani A, Rezaei A. Org. Lett. 2010; 12: 2852
    • 19b Cui L, Liu Q, Yu J, Ni C, Yu H. Tetrahedron Lett. 2011; 52: 5530
  • 20 Yi F, Zhao W, Wang Z, Bi X. Org. Lett. 2019; 21: 3158
  • 21 Wang Y, Yu Y, Zhao L, Ning Y. Eur. J. Org. Chem. 2019; 7237
  • 22 Souldozi A, Ramazani A, Bouslimani N, Welter R. Tetrahedron Lett. 2007; 48: 2617
    • 23a Adib M, Ansari S, Fatemi S, Bijanzadeh HR, Zhu LG. Tetrahedron 2010; 66: 2723
    • 23b Adib M, Ansari S, Bijanzadeh HR. Synlett 2011; 619
  • 24 Adib M, Ansari S, Feizi S, Bijanzadeh HR. Synlett 2010; 921
  • 25 Wang H, Mi P, Zhao W, Kumar R, Bi X. Org. Lett. 2017; 19: 5613
    • 26a Sun M, Zhao L, Ding MW. J. Org. Chem. 2019; 84: 14313
    • 26b Ren ZL, Lu WT, Cai S, Xiao MM, Yuan YF, He P, Ding MW. J. Org. Chem. 2019; 84: 14911
    • 26c Ren ZL, Guan ZR, Kong HH, Ding MW. Org. Chem. Front. 2017; 4: 2044
    • 26d Guan ZR, Wan Q, Ding MW. Tetrahedron 2019; 75: 4626
    • 26e Ren ZL, He P, Lu WT, Sun M, Ding MW. Org. Biomol. Chem. 2018; 16: 6322
    • 26f Xiong J, Wei X, Wan YC, Ding MW. Tetrahedron 2019; 75: 1072
    • 27a Wu X, Chen DF, Chen SS, Zhu YF. Eur. J. Org. Chem. 2015; 468
    • 27b Wang JK, Sun YL, Jiang MH, Hu TY, Zhao YJ, Li X, Wang GJ, Hao K, Zhen L. J. Org. Chem. 2018; 83: 13121
    • 27c Yadav AK, Yadav LD. S. Tetrahedron Lett. 2015; 56: 6696