Synthesis 2021; 53(06): 983-1002
DOI: 10.1055/s-0040-1705986
review

Transition-Metal-Catalyzed Cross-Coupling Reactions of Grignard Reagents

Kinga Juhász
,
Ágnes Magyar
,
Zoltán Hell
The research reported in this paper and carried out at BME has been supported by the NRDI Fund (TKP2020 NC, Grant No. BME-NC) based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology.


Abstract

Transition-metal-catalyzed cross-coupling of organo­halides, ethers, sulfides, amines, and alcohols (and derivatives thereof) with Grignard reagents, known as the Kumada–Tamao–Corriu reaction, can be used to prepare important intermediates in the synthesis of numerous­ biologically active compounds. The most frequently used transition metals are nickel, palladium, and iron, but there are several examples for cross-coupling reactions catalyzed by copper, cobalt, manganese, chromium, etc. salts and complexes. The aim of this review is to summarize the most important transition-metal-catalyzed cross-coupling reactions realized in the period 2000 to 2020.

1 Introduction

2 Nickel Catalysis

3 Palladium Catalysis

4 Iron Catalysis

5 Catalysis by Other Transition Metals

5.1 Cobalt Catalysis

5.2 Copper Catalysis

5.3 Manganese Catalysis

5.4 Chromium Catalysis

6 Conclusion



Publication History

Received: 01 September 2020

Accepted after revision: 19 October 2020

Article published online:
10 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Barbier P. C. R. Hebd. Seances Acad. Sci. 1899; 128: 110
  • 2 Grignard V. C. R. Hebd. Seances Acad. Sci. 1900; 130: 1322
  • 3 Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
  • 4 Corriu RJ. P, Masse JP. J. Chem. Soc., Chem. Commun. 1972; 144a
  • 5 Kharash MS, Fields EK. J. Am. Chem. Soc. 1941; 63: 2316
  • 6 Okamura H, Miura M, Takei H. Tetrahedron Lett. 1979; 20: 43
  • 7 Guérinot A, Cossy J. Acc. Chem. Res. 2020; 53: 1351
  • 8 Gandeepan P, Muller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 9 Cheng LJ, Mankad NP. Chem. Soc. Rev. 2020; 49: 8036
  • 10 Piontek A, Bisz E, Szostak M. Angew. Chem. Int. Ed. 2018; 57: 11116
  • 11 Liang L.-C, Chien P.-S, Lin J.-M, Huang M.-H, Huang Y.-L, Liao J.-H. Organometallics 2006; 25: 1399
  • 12 Wang Z.-X, Wang L. Chem. Commun. 2007; 2423
  • 13 Sun K, Wang L, Wang Z.-X. Organometallics 2008; 27: 5649
  • 14 Vechorkin O, Csok Z, Scopelliti R, Hu X. Chem. Eur. J. 2009; 15: 3889
  • 15 Vechorkin O, Godinat A, Scopelliti R, Hu X. Angew. Chem. Int. Ed. 2011; 50: 11777
  • 16 Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2002; 124: 4222
  • 17 Terao J, Kambe N. Bull. Chem. Soc. Jpn. 2006; 79: 663
  • 18 Terao J, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2003; 125: 5646
  • 19 Terao J, Todo H, Watanabe H, Ikumi A, Kambe N. Angew. Chem. Int. Ed. 2004; 43: 6180
  • 20 Chiang C.-C, Luh T.-Y. Synlett 2001; 977
  • 21 Wenkert E, Michelotti EL, Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
  • 22 Wenkert E, Michelotti EL, Swindell CS, Tingoli M. J. Org. Chem. 1984; 49: 4894
  • 23 Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428
  • 24 Wolf J, Labande A, Natella M, Daran J.-C, Poli R. J. Mol. Catal. A: Chem. 2006; 259: 205
  • 25 Guan B.-T, Xiang S.-K, Wang B.-Q, Sun Z.-P, Wang Y, Zhao K.-Q, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 3268
  • 26 Guan B.-T, Xiang S.-K, Wu T, Sun Z.-P, Wang B.-Q, Zhao K.-Q, Shi Z.-J. Chem. Commun. 2008; 1437
  • 27 Kanemura S, Kondoh A, Yorimitsu H, Oshima K. Synthesis 2008; 2659
  • 28 Vechorkin O, Hu X. Angew. Chem. Int. Ed. 2009; 48: 2937
  • 29 Monnereau L, Sémeril D, Matt D, Toupet L, Mota AJ. Adv. Synth. Catal. 2009; 351: 1383
  • 30 Yu D.-G, Li B.-J, Zheng S.-F, Guan B.-T, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2010; 49: 4566
  • 31 Xie L.-G, Wang Z.-X. Chem. Eur. J. 2011; 17: 4972
  • 32 Zhao F, Yu D.-G, Zhu R.-Y, Xi Z, Shi Z.-J. Chem. Lett. 2011; 40: 1001
  • 33 Iglesias MJ, Prieto A, Nicasio MC. Org. Lett. 2012; 14: 4318
  • 34 Onoabedje EA, Ezema BE, Ezema CG, Ugwu DI. Chem. Process Eng. Res. 2013; 8: 6
  • 35 Xue F, Zhao J, Hor TS. A. Chem. Commun. 2013; 49: 10121
  • 36 Yang Z, Chen X, Kong W, Xia S, Zheng R, Luo F, Zhu G. Org. Biomol. Chem. 2013; 11: 2175
  • 37 Xue F, Zhao J, Hor TS, Hayashi T. J. Am. Chem. Soc. 2015; 137: 3189
  • 38 Tobisu M, Takahira T, Chatani N. Org. Lett. 2015; 17: 4352
  • 39 Tobisu M, Takahira T, Morioka T, Chatani N. J. Am. Chem. Soc. 2016; 138: 6711
  • 40 Harkness GJ, Clarke ML. Catal. Sci. Technol. 2018; 8: 328
  • 41 O’Neill MJ, Riesebeck T, Cornella J. Angew. Chem. Int. Ed. 2018; 57: 9103
  • 42 Wu Z, Si T, Xu G, Xu B, Tang W. Chin. Chem. Lett. 2019; 30: 597
  • 43 Piontek A, Ochędzan-Siodłak W, Bisz E, Szostak M. Adv. Synth. Catal. 2019; 361: 2329
  • 44 He X.-Y, Zhang Z.-X, Li C.-J, Li Y. Russ. J. Gen. Chem. 2020; 89: 2591
  • 45 Zhang ZB, Ji CL, Yang C, Chen J, Hong X, Xia JB. Org. Lett. 2019; 21: 1226
  • 46 Yang B, Wang ZX. J. Org. Chem. 2020; 85: 4772
  • 47 Muller V, Ghorai D, Capdevila L, Messinis AM, Ribas X, Ackermann L. Org. Lett. 2020; 22: 7034
  • 48 Zhang Y, Chen Y, Zhang Z, Liu S, Shen X. Org. Lett. 2020; 22: 970
  • 49 Dawson DD, Oswald VF, Borovik AS, Jarvo ER. Chem. Eur. J. 2020; 26: 3044
  • 50 Yamamura M, Moritani I, Murahashi S.-I. J. Organomet. Chem. 1975; 91: C39
  • 51 Cassar L. J. Organomet. Chem. 1975; 93: 253
  • 52 Knappke CE, Jacobi von Wangelin A. Chem. Soc. Rev. 2011; 40: 4948
  • 53 Rottländer M, Boymond L, Bérillon L, Leprêtre A, Varchi G, Avolio S, Laaziri H, Quéguiner G, Ricci A, Cahiez G, Knochel P. Chem. Eur. J. 2000; 6: 767
  • 54 Trécourt F, Breton G, Bonnet V, Mongin F, Marsais F, Quéguiner G. Tetrahedron Lett. 1999; 40: 4339
  • 55 Trécourt F, Breton G, Bonnet V, Mongin F, Marsais F, Quéguiner G. Tetrahedron 2000; 56: 1349
  • 56 Bolm C, Pupowicz D. Tetrahedron Lett. 1997; 38: 7349
  • 57 Bonnet V, Mongin F, Trécourt F, Quéguiner G, Knochel P. Tetrahedron 2002; 58: 4429
  • 58 Frisch AC, Shaikh N, Zapf A, Beller M. Angew. Chem. Int. Ed. 2002; 41: 4056
  • 59 Kirchhoff JH, Dai C, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 1945
  • 60 Terao J, Naitoh Y, Kuniyasu H, Kambe N. Chem. Lett. 2003; 32: 890
  • 61 Terao J, Naitoh Y, Kuniyasu H, Kambe N. Chem. Commun. 2007; 825
  • 62 Huang K, Nolan SP. J. Am. Chem. Soc. 1999; 121: 9889
  • 63 Frisch AC, Zapf A, Briel O, Kayser B, Shaikh N, Beller M. J. Mol. Catal. A: Chem. 2004; 214: 231
  • 64 Hartmann CE, Nolan SP, Cazin CS. J. Organometallics 2009; 28: 2915
  • 65 Itami K, Mineno M, Muraoka N, Yoshida J. J. Am. Chem. Soc. 2004; 126: 11778
  • 66 Ackermann L, Gschrei CJ, Althammer A, Riederer M. Chem. Commun. 2006; 1419
  • 67 Hills ID, Netherton MR, Fu GC. Angew. Chem. Int. Ed. 2003; 42: 5749
  • 68 Rodríguez N, Ramírez de Arellano C, Asensio G, Medio-Simón M. Chem. Eur. J. 2007; 13: 4223
  • 69 Altenhoff G, Würtz S, Glorius F. Tetrahedron Lett. 2006; 47: 2925
  • 70 Rudolph A, Rackelmann N, Lautens M. Angew. Chem. Int. Ed. 2007; 46: 1485
  • 71 Martin R, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3844
  • 72 Wolf C, Xu H. J. Org. Chem. 2008; 73: 162
  • 73 Li GY. J. Organomet. Chem. 2002; 653: 63
  • 74 López-Pérez A, Adrio J, Carretero JC. Org. Lett. 2009; 11: 5514
  • 75 Wenkert E, Han A.-L, Jenny C.-J. J. Chem. Soc., Chem. Commun. 1988; 975
  • 76 Reeves JT, Fandrick DR, Tan Z, Song JJ, Lee H, Yee NK, Senanyake CH. Org. Lett. 2010; 12: 4388
  • 77 Ackermann L, Kapdi AR, Fenner S, Kornhaass C, Schulzke C. Chem. Eur. J. 2011; 17: 2965
  • 78 Sugita N, Hayashi S, Hino F, Takanami T. J. Org. Chem. 2012; 77: 10488
  • 79 Dai W, Xiao J, Jin G, Wu J, Cao S. J. Org. Chem. 2014; 79: 10537
  • 80 Krasovskiy AL, Haley S, Voigtritter K, Lipshutz BH. Org. Lett. 2014; 16: 4066
  • 81 Jeanne-Julien L, Astier E, Lai-Kuen R, Genta-Jouve G, Roulland E. Org. Lett. 2018; 20: 1430
  • 82 Jeanne-Julien L, Masson G, Astier E, Genta-Jouve G, Servajean V, Beau JM, Norsikian S, Roulland E. Org. Lett. 2017; 19: 4006
  • 83 Chen Z, So CM. Org. Lett. 2020; 22: 3879
  • 84 Wu C, McCollom SP, Zheng Z, Zhang J, Sha S.-C, Li M, Walsh PJ, Tomson NC. ACS Catal. 2020; 10: 7934
  • 85 Gilman H, Lichtenwalter M. J. Am. Chem. Soc. 1939; 61: 957
  • 86 Tamura M, Kochi J. J. Am. Chem. Soc. 1971; 93: 1487
  • 87 Tamura M, Kochi J. Synthesis 1971; 303
  • 88 Neumann SM, Kochi JK. J. Org. Chem. 1975; 40: 599
  • 89 Smith RS, Kochi JK. J. Org. Chem. 1976; 41: 502
  • 90 Kochi JK. Acc. Chem. Res. 1974; 7: 351
    • 91a Negishi E.-I, Baba S. J. Chem. Soc., Chem. Commun. 1976; 596b
    • 91b Baba S, Negishi E. J. Am. Chem. Soc. 1976; 98: 6729
    • 91c Negishi E, King AO, Okukado N. J. Org. Chem. 1977; 42: 1821
    • 91d Negishi E, Van Horn DE. J. Am. Chem. Soc. 1977; 99: 3168
  • 92 Bogdanović B, Schwickardi M. Angew. Chem. Int. Ed. 2000; 39: 4610
  • 93 Fürstner A, Leitner A. Angew. Chem. Int. Ed. 2002; 41: 609
  • 94 Martin R, Fürstner A. Angew. Chem. Int. Ed. 2004; 43: 3955
  • 95 Scheiper B, Bonnekessel M, Krause H, Fürstner A. J. Org. Chem. 2004; 69: 3943
  • 96 Nagano T, Hayashi T. Org. Lett. 2004; 6: 1297
  • 97 Nakamura M, Matsuo K, Ito S, Nakamura E. J. Am. Chem. Soc. 2004; 126: 3686
  • 98 Bedford RB, Bruce DW, Frost RM, Hird M. Chem. Commun. 2005; 4161
  • 99 Bedford RB, Betham M, Bruce DW, Danopoulos AA, Frost RM, Hird M. J. Org. Chem. 2006; 71: 1104
  • 100 Nagano T, Hayashi T. Org. Lett. 2005; 7: 491
  • 101 Cahiez G, Chaboche C, Mahuteau-Betzer F, Ahr M. Org. Lett. 2005; 7: 1943
  • 102 Itami K, Higashi S, Mineno M, Yoshida J. Org. Lett. 2005; 7: 1219
  • 103 Ottesen LK, Ek F, Olsson R. Org. Lett. 2006; 8: 1771
  • 104 Cahiez G, Habiak V, Duplais C, Moyeux A. Angew. Chem. Int. Ed. 2007; 46: 4364
  • 105 Guerinot A, Reymond S, Cossy J. Angew. Chem. Int. Ed. 2007; 46: 6521
  • 106 Cahiez G, Duplais C, Moyeux A. Org. Lett. 2007; 9: 3253
  • 107 Mayer M, Czaplik WM, Jacobi von Wangelin A. Adv. Synth. Catal. 2010; 352: 2147
    • 108a Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
    • 108b Yoshikai N, Matsumoto A, Norinder J, Nakamura E. Angew. Chem. Int. Ed. 2009; 48: 2925
    • 108c Nakamura E, Yoshikai N, Matsumoto A, Norinder J. Synlett 2010; 313
  • 109 Yoshikai N, Asako S, Yamakawa T, Ilies L, Nakamura E. Chem. Asian J. 2011; 6: 3059
  • 110 Mo Z, Zhang Q, Deng L. Organometallics 2012; 31: 6518
  • 111 Sun C.-L, Krause H, Fürstner A. Adv. Synth. Catal. 2014; 356: 1281
  • 112 Xing T, Zhang Z, Da Y.-X, Quan Z.-J, Wang X.-C. Asian J. Org. Chem. 2015; 4: 538
  • 113 Gartner D, Stein AL, Grupe S, Arp J, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 10545
  • 114 Chen X, Quan Z.-J, Wang X.-C. Appl. Organomet. Chem. 2015; 29: 296
  • 115 Liu KM, Liao LY, Duan XF. Chem. Commun. 2015; 51: 1124
  • 116 Kim JG, Son YH, Seo JW, Kang EJ. Eur. J. Org. Chem. 2015; 2015: 1781
  • 117 Shakhmaev RN, Sunagatullina AS, Zorin VV. Russ. J. Org. Chem. 2015; 51: 95
  • 118 Buono FG, Zhang Y, Tan Z, Brusoe A, Yang B.-S, Lorenz JC, Giovannini R, Song JJ, Yee NK, Senanayake CH. Eur. J. Org. Chem. 2016; 2016: 2599
  • 119 Li Z, Liu L, Sun HM, Shen Q, Zhang Y. Dalton Trans. 2016; 45: 17739
  • 120 Piontek A, Szostak M. Eur. J. Org. Chem. 2017; 2017: 7271
  • 121 Seto C, Otsuka T, Takeuchi Y, Tabuchi D, Nagano T. Synlett 2018; 29: 1211
  • 122 Ma E, Jiang Y, Chen Y, Qi L, Yan X, Li Z. Asian J. Org. Chem. 2018; 7: 914
  • 123 Bisz E, Szostak M. J. Org. Chem. 2019; 84: 1640
  • 124 Motohashi H, Kato M, Mikami K. J. Org. Chem. 2019; 84: 6483
  • 125 Wei X.-J, Abdiaj I, Sambiagio C, Li C, Zysman-Colman E, Alcázar J, Noël T. Angew. Chem. Int. Ed. 2019; 58: 13030
  • 126 Deng Y, Wei XJ, Wang X, Sun Y, Noël T. Chem. Eur. J. 2019; 25: 14532
  • 127 Nugent J, Shire BR, Caputo DF. J, Pickford HD, Nightingale F, Houlsby IT. T, Mousseau JJ, Anderson EA. Angew. Chem. Int. Ed. 2020; 59: 11866
  • 128 Bisz E, Szostak M. Molecules 2020; 25: 230
  • 129 Manjón-Mata I, Quirós MT, Buñuel E, Cárdenas DJ. Adv. Synth. Catal. 2020; 362: 146
  • 130 Wei YM, Ma XD, Wang L, Duan XF. Chem. Commun. 2020; 56: 1101
  • 131 Machitani K, Tanaka Y, Nishiyama Y, Fujii A, Saito A, Mori H. J. Flow Chem. 2020; 10: 491
  • 132 Tsuji T, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2002; 41: 4137
  • 133 Ohmiya H, Tsuji T, Yorimitsu H, Oshima K. Chem. Eur. J. 2004; 10: 5640
  • 134 Ohmiya H, Wakabayashi K, Yorimitsu H, Oshima K. Tetrahedron 2006; 62: 2207
  • 135 Cahiez G, Chaboche C, Duplais C, Giulliani A, Moyeux A. Adv. Synth. Catal. 2008; 350: 1484
  • 136 Cahiez G, Chaboche C, Duplais C, Moyeux A. Org. Lett. 2009; 11: 277
  • 137 Ohmiya H, Yorimitsu H, Oshima K. Chem. Lett. 2004; 33: 1240
  • 138 Shirakawa E, Sato T, Imazaki Y, Kimura T, Hayashi T. Chem. Commun. 2007; 4513
  • 139 Li B, Wu Z.-H, Gu Y.-F, Sun C.-L, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 1109
  • 140 Chen Q, Ilies L, Yoshikai N, Nakamura E. Org. Lett. 2011; 13: 3232
  • 141 Iwasaki T, Takagawa H, Singh SP, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2013; 135: 9604
  • 142 Kambe N, Iwasaki T, Takagawa H, Okamoto K, Singh S, Kuniyasu H. Synthesis 2014; 46: 1583
  • 143 Zhou Y, Wang L, Yuan G, Liu S, Sun X, Yuan C, Yang Y, Bian Q, Wang M, Zhong J. Org. Lett. 2020; 22: 4532
  • 144 Gonnard L, Guerinot A, Cossy J. Chem. Eur. J. 2015; 21: 12797
  • 145 Cahiez G, Chaboche C, Jézéquel M. Tetrahedron 2000; 56: 2733
  • 146 Kofink CC, Knochel P. Org. Lett. 2006; 8: 4121
  • 147 Hintermann L, Xiao L, Labonne A. Angew. Chem. Int. Ed. 2008; 47: 8246
  • 148 Ren P, Stern LA, Hu X. Angew. Chem. Int. Ed. 2012; 51: 9110
  • 149 Terao J, Todo H, Begum SA, Kuniyasu H, Kambe N. Angew. Chem. Int. Ed. 2007; 46: 2086
  • 150 Shen R, Iwasaki T, Terao J, Kambe N. Chem. Commun. 2012; 48: 9313
  • 151 Yang CT, Zhang ZQ, Liang J, Liu JH, Lu XY, Chen HH, Liu L. J. Am. Chem. Soc. 2012; 134: 11124
  • 152 Cahiez G, Gager O, Buendia J. Angew. Chem. Int. Ed. 2010; 49: 1278
  • 153 Dai W, Shi H, Zhao X, Cao S. Org. Lett. 2016; 18: 4284
  • 154 Zhu Y, Xiong T, Han W, Shi Y. Org. Lett. 2014; 16: 6144
  • 155 Kim JH, Chung YK. Chem. Commun. 2013; 49: 11101
  • 156 Kakiya H, Inoue R, Shinokubo H, Oshima K. Tetrahedron 2000; 56: 2131
  • 157 Cahiez G, Lepifre F, Ramiandrasoa P. Synthesis 1999; 2138
  • 158 Cahiez G, Luart D, Lecomte F. Org. Lett. 2004; 6: 4395
  • 159 Rueping M, Ieawsuwan W. Synlett 2007; 247
  • 160 Matson E, Petel B, Purak M. Synlett 2018; 29: 1700
  • 161 Cahiez G, Duplais C, Buendia J. Angew. Chem. Int. Ed. 2009; 48: 6731
  • 162 Ghaleshahi HG, Antonacci G, Madsen R. Eur. J. Org. Chem. 2017; 2017: 1331
  • 163 Antonacci G, Ahlburg A, Fristrup P, Norrby P.-O, Madsen R. Eur. J. Org. Chem. 2017; 2017: 4758
  • 164 Murakami K, Ohmiya H, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 1569
  • 165 Steib AK, Kuzmina OM, Fernandez S, Flubacher D, Knochel P. J. Am. Chem. Soc. 2013; 135: 15346
  • 166 Kuzmina OM, Knochel P. Org. Lett. 2014; 16: 5208
  • 167 Steib AK, Kuzmina OM, Fernandez S, Malhotra S, Knochel P. Chem. Eur. J. 2015; 21: 1961
  • 168 Bellan AB, Kuzmina OM, Vetsova VA, Knochel P. Synthesis 2017; 49: 188
  • 169 Li J, Ren Q, Cheng X, Karaghiosoff K, Knochel P. J. Am. Chem. Soc. 2019; 141: 18127