Synthesis 2021; 53(12): 2142-2154
DOI: 10.1055/s-0040-1705993
paper

Knoevenagel Condensation of Phosphinoylacetic Acids with Aldehydes: An Efficient One-Pot Strategy for the Synthesis of P-Functionalized Alkenyl Compounds

Kamil Dziuba
,
Sławomir Frynas
,
This research received no external funding. In part the research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund under the framework of the Operational Program Development of Eastern Poland 2007–2013 (Contract No. POPW.01.03.00-06-009/11-00, equipping the laboratories of the Faculties of Biology and Biotechnology, Mathematics, Physics and Informatics, and Chemistry for studies of biologically active substances and environmental samples) as well as Polish National Science Centre research grant (2012/05/B/ST5/00362).


Abstract

A wide range of commercially available aldehydes have been applied to Knoevenagel condensation reaction to give E-alkenylphosphine oxides and vinylphosphine oxides. The readily available phosphinoylacetic acids derived from P(O)–H compounds were used as the starting materials in the reaction, providing a highly stereoselective and efficient method for constructing α,β-unsaturated phosphine oxides. Moreover, this simple and practical procedure provides an alternative and more environmentally friendly synthesis strategy for this type of P-functionalized alkenyl compounds.

Supporting Information



Publication History

Received: 15 October 2020

Accepted after revision: 13 November 2020

Article published online:
11 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Quin LD. A Guide to Organophosphorus Chemistry. Wiley Interscience; New York: 2000
    • 1b Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity. Kukhar VP, Hudson HR. Wiley; Chichester: 2000
    • 1c The Chemistry of Organophosphorus Compounds, Vol. 4. Hartley FR. Wiley; Chichester: 1996
    • 1d Horsman GP, Zechel DL. Chem. Rev. 2017; 117: 5704
    • 1e Kudzin ZH, Kudzin MH, Drabowicz J, Stevens CV. Curr. Org. Chem. 2011; 15: 2015
    • 1f Mucha A, Kafarski P, Berlicki L. J. Med. Chem. 2011; 54: 5955
    • 2a Organophosphorus Chemistry, Vol. 48. Allen DW, Loakes D, Tebby JC. The Royal Society of Chemistry; Cambridge: 2019
    • 2b Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications. Börner A. Wiley-VCH; Weinheim: 2008
    • 2c Grabulosa A. P-Stereogenic Ligands in Enantioselective Catalysis. Royal Society of Chemistry; Cambridge: 2010
    • 2d Julienne D, Toulgoat F, Delacroix O, Gaumont A.-C. Curr. Org. Chem. 2010; 14: 1195
    • 2e Xi C, Yu B, Yan X, Tang N. Polyhedron 2013; 52: 1323
    • 2f Tseng Y.-Y, Kamikawa K, Wu Q, Takahashi T, Ogasawara M. Adv. Synth. Catal. 2015; 357: 2255
    • 3a Li H, Luo J, Li B, Yi X, He Z. Org. Lett. 2017; 19: 5637
    • 3b Dubrovina NV, Boerner A. Angew. Chem. Int. Ed. 2004; 43: 5883
    • 3c Ackermann L. Synthesis 2006; 1557
    • 3d Nemoto T, Masuda T, Matsumoto T, Hamada Y. J. Org. Chem. 2005; 70: 7172
    • 3e Galland A, Dobrota C, Toffano M, Fiaud J.-C. Tetrahedron: Asymmetry 2006; 17: 2354
    • 3f Loup J, Müller V, Ghorai D, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 1749
    • 3g Mitsushige Y, Yasuda H, Carrow BP, Ito S, Kobayashi M, Tayano T, Watanabe Y, Okuno Y, Hayashi S, Kuroda J, Okumura Y, Nozaki K. ACS Macro Lett. 2018; 7: 305
    • 3h Chen M, Chen C. Angew. Chem. Int. Ed. 2018; 57: 3094
    • 4a Rahman MS, Steed JW, Hii KK. Synthesis 2000; 1320
    • 4b Maj AM, Pietrusiewicz KM, Suisse I, Agbossou F, Mortreux A. J. Organomet. Chem. 2001; 626: 157
    • 4c Rahman MS, Oliana M, Hii KK. Tetrahedron: Asymmetry 2004; 15: 1835
    • 4d Pietrusiewicz KM, Zablocka M. Tetrahedron Lett. 1988; 29: 937
    • 4e Oliana M, King F, Horton PN, Hursthouse MB, Hii KK. J. Org. Chem. 2006; 71: 2472
    • 4f Gonzalez-Nogal AM, Cuadrado P, Sarmentero MA. Tetrahedron 2010; 66: 9610
    • 5a Baumgartner T, Réau R. Chem. Rev. 2006; 106: 4681
    • 5b Queffelec C, Petit M, Janvier P, Knight DA, Bujoli B. Chem. Rev. 2012; 112: 3777
    • 6a Wilkie CA, Morgan AB, Nelson GL. Fire and Polymers V: Materials and Concepts for Fire Retardancy. American Chemical Society; Washington DC: 2009: 205-248
    • 6b Green J. In Fire Retardancy of Polymeric Materials. Grand AF, Wilkie CA. Marcel Dekker; New York: 2000: 147-170
    • 6c Zhang Y, Yu B, Wang B, Liew KM, Song L, Wang C, Hu Y. Ind. Eng. Chem. Res. 2017; 56: 1245
    • 6d You G, Cheng Z, Tang Y, He H. Ind. Eng. Chem. Res. 2015; 54: 7309
  • 7 Science of Synthesis: Organophosphorus Compounds, Vol. 42. Mathey F. Thieme; Stuttgart: 2009
    • 8a Han L.-B, Tanaka M. J. Am. Chem. Soc. 1996; 118: 1571
    • 8b Han L.-B, Hua R, Tanaka M. Angew. Chem. Int. Ed. 1998; 37: 94
    • 9a Han L.-B, Choi N, Tanaka M. J. Am. Chem. Soc. 1996; 118: 7000
    • 9b Chen T, Zhao C.-Q, Han L.-B. J. Am. Chem. Soc. 2018; 140: 3139
    • 9c Sajna KV, Srinivas V, Kumara Swamy KC. Adv. Synth. Catal. 2010; 352: 3069
    • 10a Liu L, Wu Y, Wang Z, Zhu J, Zhao Y. J. Org. Chem. 2014; 79: 6816
    • 10b Niu M, Fu H, Jiang Y, Zhao Y. Chem. Commun. 2007; 272
    • 10c Trostyanskaya IG, Beletskaya IP. Tetrahedron 2014; 70: 2556
    • 11a Han L.-B, Zhang C, Yazawa H, Shimada S. J. Am. Chem. Soc. 2004; 126: 5080
    • 11b Wu Y, Liu L, Yang K, Gao Y, Zhao Y. J. Org. Chem. 2014; 79: 8118
    • 11c Khemchyan LL, Ivanova JV, Zalesskiy SS, Ananikov VP, Beletskaya IP, Starikova ZA. Adv. Synth. Catal. 2014; 356: 771
    • 12a Zhao CQ, Han LB, Goto M, Tanaka M. Angew. Chem. Int. Ed. 2001; 40: 1929
    • 12b Han L.-B, Zhao C.-Q, Tanaka M. J. Org. Chem. 2001; 66: 5929
    • 12c Kondoh A, Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2008; 81: 502
    • 12d Huang Y, Hao W, Ding G, Cai M.-Z. J. Organomet. Chem. 2012; 715: 141
  • 13 Lai C, Xi C, Chen C, Ma M, Hong X. Chem. Commun. 2003; 2736
    • 14a Takaki K, Takeda M, Koshoji G, Shishido T, Takehira K. Tetrahedron Lett. 2001; 42: 6357
    • 14b Takaki K, Koshoji G, Komeyama K, Takeda M, Shishido T, Kitani A, Takehira K. J. Org. Chem. 2003; 68: 6554
    • 15a Li X, Yang F, Wu Y, Wu Y. Org. Lett. 2014; 16: 992
    • 15b Tang L, Wen L, Sun T, Zhang D, Yang Z, Feng C, Wang Z. Asian J. Org. Chem. 2017; 6: 1683
    • 15c Liu L, Zhou D, Dong J, Zhou Y, Yin S.-F, Han L.-B. J. Org. Chem. 2018; 83: 4190
    • 16a Yuan J.-W, Yang L.-R, Mao P, Qu L.-B. RSC Adv. 2016; 6: 87058
    • 16b Xue J.-F, Zhou S.-F, Liu Y.-Y, Pan X, Zou J.-P, Asekun OT. Org. Biomol. Chem. 2015; 13: 4896
    • 17a Xu Y, Xia J, Guo H. Synthesis 1986; 691
    • 17b Liu L, Wang Y, Zeng Z, Xu P, Gao Y, Yin Y, Zhao Y. Adv. Synth. Catal. 2013; 355: 659
    • 17c Koranteng E, Liu Y.-Y, Liu S.-Y, Wu Q.-X, Lu L.-Q, Xiao W.-J. Chin. J. Catal. 2019; 40: 1841
  • 18 Krawczyk H, Albrecht Ł. Synthesis 2005; 2887
  • 19 Knoevenagel E. Ber. Dtsch. Chem. Ges. 1894; 27: 2345
  • 21 Tsvetkov EN, Bondarenko NA, Malakhova IG, Kabachnik MI. Synthesis 1986; 198
  • 22 Richard JJ, Banks CV. J. Org. Chem. 1963; 28: 123
  • 23 Kielbasinski P, Zurawinski R, Pietrusiewicz KM, Zablocka M, Mikolajczyk M. Pol. J. Chem. 1998; 72: 564
  • 24 Malevannaya RA, Tsvetkov EN, Kabachnik MI. J. Gen. Chem. USSR 1971; 41: 1432
  • 25 Brown AD. Jr, Kosolapoff GM. J. Chem. Soc. 1968; 2: 839
  • 26 Sowa S, Stankevič M, Flis A, Pietrusiewicz KM. Synthesis 2018; 50: 2106
  • 27 Frynas S, Lastawiecka E, Koziol AE, Flis A, Pietrusiewicz KM. J. Org. Chem. 2019; 84: 1818
  • 28 Kabachnik MI, Jung-Yü C, Tsvtekov EN. Doklady Chem. 1960; 135: 1309
  • 29 Shen J, Yu R-X, Luo Y, Zhu L-X, Zhang Y, Wang X, Xiao B, Cheng J-B, Yang B, Li G-Z. Eur. J. Org. Chem. 2019; 2065
  • 30 Horner L, Binder H. Phosphorus, Sulfur Rel. Elem. 1971; 1: 17
  • 31 Gatignol J, Alayrac C, Lohier J.-F, Ballester J, Taillefer M, Gaumont A.-C. Adv. Synth. Catal. 2013; 355: 2822