Synthesis 2021; 53(19): 3469-3484
DOI: 10.1055/s-0040-1706044
review

A Review on Synthetic Approaches towards Kavalactones

,
Pragya Anand
Dr. Krishnaji is grateful to CHRIST (Deemed to be University), Bangalore, for funding in the form of a Major Research Project (MRPDSC-1723).


Abstract

Kavalactones are classes of α-pyrone and 5,6-dihydropyrone derivatives showing various biological activities, and numerous approaches have been reported for the preparation of these molecules. In this review, we discuss the different synthetic approaches towards these naturally occurring lactones, in both racemic and enantiomerically pure forms, that have been reported in the literature to date. It is hoped that this review will assist researchers in the development of additional and efficient synthetic routes towards kavalactones.

1 Introduction

2 Synthetic Approaches for the Preparation of Kavalactones

3 Conclusion



Publication History

Received: 09 March 2021

Accepted after revision: 30 April 2021

Article published online:
25 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Achenbach H, Wittman G. Tetrahedron Lett. 1970; 37: 3259
  • 2 Pepping J. Am. J. Health-Syst. Pharmacol. 1999; 56: 957
  • 3 Dharmaratne HR, Nanayakkara NP, Khan IA. Phytochemistry 2002; 59: 429
  • 4 Bilia AR, Gallon S, Vincieri FF. Life Sci. 2002; 70: 2581
  • 5 Singh YN, Singh NN. CNS Drugs 2002; 16: 731
  • 7 Sabitha G, Sudhakar K, Yadav JS. Tetrahedron Lett. 2006; 47: 8599
  • 8 Wang F.-D, Yue J.-M. Eur. J. Org. Chem. 2005; 2575
  • 9 Du H, Zhao D, Ding K. Chem. Eur. J. 2004; 10: 5964
  • 10 Wang FD, Yue JM. Synlett 2005; 2077
  • 11 Smith TE, Djang M, Velander AJ, Downey CW, Carroll KA, Alpen S. Org. Lett. 2004; 14: 2317
  • 12 Kamal A, Krishnaji T, Khanna GB. R. Tetrahedron Lett. 2006; 47: 8657
  • 13 Villano R, Acocella MR, Massa A, Palombi L, Scettri A. Tetrahedron: Asymmetry 2006; 17: 3332
  • 14 Lin L, Chen Z, Yang X, Liu X, Feng X. Org. Lett. 2008; 10: 1311
  • 15 Amaral PA, Gouault N, Le Roch M, Eifler-Lima VF, David M. Tetrahedron Lett. 2008; 49: 6607
  • 16 Pospíšil J, Markó IE. Tetrahedron Lett. 2008; 49: 1523
  • 17 Mineno M, Sawai Y, Kanno K, Sawada N, Mizufune H. Tetrahedron 2013; 69: 10921
  • 18 Mineeva IV. Russ. J. Org. Chem. 2013; 5: 712
  • 19 Eskici M, Karanfil A, Sabih Özer M, Kabak Y, Durucasu I. Synth. Commun. 2018; 48: 2382
    • 20a Tronchet JM. J, Grivet C, Grand E, Seman M, Dilda P. Carbohydr. Lett. 2000; 4: 5
    • 20b Sharma GV. M, Vepachedu SR. Tetrahedron Lett. 1990; 31: 4931
    • 20c Oikawa Y, Yoshioka T, Yonemitsu O. Tetrahedron Lett. 1982; 23: 885
  • 21 Singh RP, Singh VK. J. Org. Chem. 2004; 69: 3425
  • 22 Arai Y, Masuda T, Yoneda S, Masaki Y, Shiro M. J. Org. Chem. 2000; 65: 258
    • 23a Friesen RW, Giroux A. Tetrahedron Lett. 1993; 34: 119
    • 23b Friesen RW, Giroux A. Can. J. Chem 1994; 72: 1857
    • 23c Friesen RW, Vanderwal C. J. Org. Chem. 1996; 61: 9103
  • 24 Kamal A, Krishnaji T, Reddy PV. Tetrahedron: Asymmetry 2007; 18: 1775
    • 25a Becker H, Sharpless KB. Angew. Chem. Int. Ed. 1996; 35: 448
    • 25b Kolb HC, Van Nieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 26a Takano S, Akiyama M, Sato S, Ogasawara K. Chem. Lett. 1983; 1593
    • 26b Corey EJ, Jones GB. J. Org. Chem. 1992; 57: 1028
    • 27a Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
    • 27b Dess DB, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
  • 28 Holmquist CR, Roskamp EJ. J. Org. Chem. 1989; 54: 3258
  • 29 Sharma GV. M, Reddy ChG, Krishna PR. J. Org. Chem. 2003; 68: 4574
    • 30a Kamal A, Reddy PV, Prabhakar RS. Tetrahedron: Asymmetry 2009; 20: 1936
    • 30b Ho G.-J, Mathre DJ. J. Org. Chem. 1995; 60: 2271
  • 31 Metri PK. Synth. Commun. 2020; 50: 1361