Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(21): 4059-4067
DOI: 10.1055/s-0040-1706049
DOI: 10.1055/s-0040-1706049
paper
Molecular Iodine-Mediated Synthesis of 2-Azaanthraquinones from [3.3.3]Propellanes via a Metal-Free Rearrangement
Financial support of this research from Tarbiat Modares University, Iran, is gratefully acknowledged.
Abstract
A novel iodine-mediated rearrangement of heterocyclic [3.3.3]propellanes under green conditions is described. This metal-free transformation for the straightforward synthesis of substituted 2-azaanthraquinones proceeds via ring opening/dissociation of C–O and C–N bonds/intramolecular C(sp3)–C(sp3) bond formation/ring expansion/aza-ring closure/1,3-N to N alkyl migration. High atom-efficiency, synthetically useful yields, easily accessible starting materials, and mild reaction conditions are advantages of this process.
Keywords
heterocyclic [3.3.3]propellanes - metal-free transformation - redox-mediated rearrangement - amidine rearrangement - 2-azaanthraquinones - one-pot four-component reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706049.
- Supporting Information
Publication History
Received: 27 August 2020
Accepted after revision: 31 May 2021
Article published online:
21 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Koyama J, Morita I, Kobayashi N, Osakai T, Usuki Y, Taniguchi M. Bioorg. Med. Chem. Lett. 2005; 15: 1079
- 1b Gomez-Monterrey I, Campiglia P, Grieco P, Diurno MV, Bolognese A, La Colla P, Novellino E. Bioorg. Med. Chem. 2003; 11: 3769
- 2 Khanapure SP, Biehl ER. Heterocycles 1988; 27: 2643
- 3 Cavaletti G, Cavaletti E, Crippa L, Di Luccio E, Oggioni N, Mazzanti B, Biagiolo T, Sala F, Frigo M, Rota S, Tagliabue E, Stanzani L, Galbiati S, Rigolio R, Zoia C, Tredici G, Perseghin P, Dassi M, Riccio P, Lolli F. J. Neuroimmunol. 2004; 151: 55
- 4a Cajori FA, Otani TT, Hamilton MA. J. Biol. Chem. 1954; 208: 107
- 4b Hamilton MA, Knorr MS, Cajori FA. Antibiot. Chemother. 1953; 3: 853
- 4c Arsenault GP. Tetrahedron Lett. 1965; 45: 4033
- 4d Steyn PS, Wessels PL, Marasas WF. O. Tetrahedron 1979; 35: 1551
- 5a Phillipson JD. Phytochemistry 1995; 38: 1319
- 5b Okunade AL, Clark AM, Hufford CD, Oguntimein BO. Planta Med. 1999; 65: 447
- 6a Waterman PG, Muhammad I. Phytochemistry 1985; 24: 523
- 6b Peterson JR, Zjawiony JK, Liu S, Hufford CD, Clark AM, Rogers RD. J. Med. Chem. 1992; 35: 4069
- 7a Choshi T, Kumemura T, Nobuhiro J, Hibino S. Tetrahedron Lett. 2008; 49: 3725
- 7b Zhu W, Mena M, Jnoff E, Sun N, Pasau P, Ghosez L. Angew. Chem. Int. Ed. 2009; 48: 5880
- 8a Rathwell K, Brimble MA. Synthesis 2007; 643
- 8b Mal D, Pahari P. Chem. Rev. 2007; 107: 1892
- 8c Mal D, Senapati BK, Pahari P. Synlett 2005; 994
- 9a Jacobs J, Kesteleyn B, De Kimpe N. Tetrahedron 2008; 64: 4985
- 9b Kesteleyn B, De Kimpe N, Van Puyvelde L. J. Org. Chem. 1999; 64: 1173
- 9c Kesteleyn B, De Kimpe N. J. Org. Chem. 2000; 65: 640
- 9d Kesteleyn B, De Kimpe N. Tetrahedron Lett. 2000; 41: 755
- 9e El Hady S, Bukuru J, Kesteleyn B, Van Puyvelde L, Van TN, De Kimpe N. J. Nat. Prod. 2002; 65: 1377
- 10 Rebstock A.-S, Mongin F, Trecourt F, Queguiner G. Org. Biomol. Chem. 2004; 2: 291
- 11a Kobayashi K, Takanohashi A, Watanabe S, Morikawa O, Konishi H. Tetrahedron Lett. 2000; 41: 7657
- 11b Kesteleyn B, De Kimpe N. Tetrahedron 1999; 55: 2091
- 11c Jacobs J, Claessens S, Mbala BM, Huygen K, De Kimpe N. Tetrahedron 2009; 65: 1193
- 11d Jacobs J, Kesteleyn B, De Kimpe N. Tetrahedron 2008; 64: 7545
- 12a Meijere AD, Meyer FE. Angew. Chem. Int. Ed. Engl. 1994; 33: 2379
- 12b Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
- 12c Jacobs J, Mbala BM, Kesteleyn B, Diels G, De Kimpe N. Tetrahedron 2008; 64: 6364
- 13 Jacobs J, Abbaspour Tehrani K, De Kimpe N. Tetrahedron 2011; 67: 9459
- 14 Potts KT, Bhattacharjee D, Walsh EB. J. Org. Chem. 1986; 51: 2011
- 15 Werner W, Grafe U, Ihn W. Tetrahedron 1997; 53: 109
- 16 Coronna T, Fronza G, Minisci F, Porta O. J. Chem. Soc., Perkin Trans. 2 1972; 2035
- 17a Bondock S. Heteroat. Chem. 2005; 16: 49
- 17b Claessens S, Jacobs J, De Kimpe N. Synlett 2007; 741
- 17c Van TN, Verniest G, Claessens S, De Kimpe N. Tetrahedron 2005; 61: 2295
- 17d Kobayashi K, Takanohashi A, Watanabe S, Morikawa O, Konishi H. Tetrahedron Lett. 2000; 41: 7657
- 18 Ginsburg D. Propellanes: Structure and Reactions . Chemie; Weinheim: 1975
- 19a Torres-Gomez H, Lehmkuhl K, Chapman D, Wünsch B. Eur. J. Med. Chem. 2013; 70: 78
- 19b Zhang Q, Zhang J, Qi X, Shreeve JM. J. Phys. Chem. A 2014; 118: 10857
- 20 Kametani T. The Chemistry of the Isoquinoline Alkaloids, Vol. 2. Kinkoda; Japan: 1974. 253f
- 21 Dilmaç AM, Wezeman T, Bär RM, Bräse S. Nat. Prod. Rep. 2019; 37: 224
- 22 Alizadeh A, Rezvanian A, Zhu L.-G. J. Org. Chem. 2012; 77: 4385
- 23 Alizadeh A, Abarghoei SB, Bayat F, Halvagar M, Zhu L.-G. Tetrahedron 2017; 73: 5800
- 24a Gao M, Yang Y, Wu Y.-D, Deng C, Cao L.-P, Meng X.-G, Wu A.-X. Org. Lett. 2010; 12: 1856
- 24b Zhu Y.-P, Lian M, Jia F.-C, Liu M.-C, Yuan J.-J, Gao Q.-H, Wu A.-X. Chem. Commun. 2012; 48: 9086
- 24c Wu X, Gao Q, Liu S, Wu A. Org. Lett. 2014; 16: 2888
- 25 Medishetti N, Kale A, Nanubolu JB, Atmakur K. Synlett 2019; 30: 293
- 26a Minkin VI, Olekhnovich LP, Zhdanov YA. Acc. Chem. Res. 1981; 14: 210
- 26b Ono M, Aoki K, Tamura Sh. Chem. Pharm. Bull. 1990; 38: 1379
- 26c Ciaccia A, Di Stefano S. Org. Biomol. Chem. 2015; 13: 646
- 27 Zhaoman Z, Yanying Z. J. Phys. Chem. A 2019; 123: 556
- 28 Sumrra SH, Atif AH, Zafar MN, Khalid M, Tahir MN, Nazar MF, Nadeem MA, Braga AA. C. J. Mol. Struct. 2018; 1166: 110
- 29 Mohamed KA, Mahmoud FA. A, Faten MA, Hend AH. J. Mol. Struct. 2018; 1173: 128