Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(03): 527-537
DOI: 10.1055/s-0040-1706469
DOI: 10.1055/s-0040-1706469
paper
t BuO2H/Cu(acac)2-Mediated Intramolecular Oxidative Lactonization of o-Allyl Arylaldehydes: Synthesis of 1-Oxoisochromans
Ministry of Science and Technology of the Republic of China (MOST 109-2113-M-037-014-MY3).

Abstract
A concise route for the t BuO2H/Cu(acac)2-mediated synthesis of 1-oxoisochromans is described. This includes: (i) oxidation of oxygenated o-allyl arylaldehydes and (ii) sequential intramolecular lactonization of the resulting olefin-containing benzoic acids. A plausible mechanism is proposed and discussed.
Key words
t BuO2H - Cu(acac)2 - 1-oxoisochromans - intramolecular oxidative annulation - o-allyl arylaldehydesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706469.
- Supporting Information
- CIF File
Publication History
Received: 14 July 2020
Accepted after revision: 14 August 2020
Article published online:
29 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Katsuki T, Sharpless KB. J. Am. Chem. Soc. 1980; 102: 5974
- 2 Rossiter BE, Verhoeven TR, Sharpless KB. Tetrahedron Lett. 1979; 20: 4733
- 3a Zhu Y, Yan H, Lu L, Liu D, Rong G, Mao J. J. Org. Chem. 2013; 78: 9898
- 3b Yedage SL, Bhanage BM. Synthesis 2015; 47: 526
- 3c Route SK, Guin S, Ghara KK, Banerjee A, Patel BK. Org. Lett. 2012; 14: 3982
- 3d Han C, Yu M, Sun W, Yao Y. Synlett 2011; 2363
- 3e Bathini T, Rawat VS, Streedhar B. Synlett 2015; 26: 1348
- 3f Wang C, Zhangm J, Wang S, Fan J, Wang Z. Org. Lett. 2010; 12: 2338
- 3g Mahesh D, Sadhu P, Punniyamurthy T. J. Org. Chem. 2016; 81: 3227
- 3h Ye Y, Kunzi SA, Sandford MS. Org. Lett. 2012; 14: 4979
- 3i Yuan Y.-q, Guo S.-r, Xiang J.-n. Synlett 2013; 24: 443
- 3j Yu J.-T, Shi B, Peng H, Sun S, Chu H, Jiang Y, Cheng J. Org. Lett. 2015; 17: 3643
- 3k Sengoden M, Bhowmick A, Punniyamurthy T. Org. Lett. 2017; 19: 158
- 3l He Z.-Y, Huang C.-F, Tian S.-K. Org. Lett. 2017; 19: 4850
- 3m Li Z, Cui Z, Liu Z.-Q. Org. Lett. 2013; 15: 406
- 4a Iqbal N, Cho EJ. J. Org. Chem. 2016; 81: 1905
- 4b Yi CS, Kwon K.-H, Lee DW. Org. Lett. 2009; 11: 1567
- 4c Li J, Wang DZ. Org. Lett. 2015; 17: 5260
- 4d Chen S, Liu Z, Shi E, Chen L, Wei W, Li H, Cheng Y, Wan X. Org. Lett. 2011; 13: 2274
- 5a Michel BW, Camelio AM, Cornell CN, Sigman MS. J. Am. Chem. Soc. 2009; 131: 6076
- 5b DeLuca RJ, Edwards JL, Steffens LD, Michel BW, Qiao X, Zhu C, Cook SP, Sigman MS. J. Org. Chem. 2013; 78: 1682
- 5c Yu J.-Q, Corey EJ. J. Am. Chem. Soc. 2003; 125: 3232
- 5d Zheng M, Chen P, Huang L, Wu W, Jiang H. Org. Lett. 2017; 19: 5756
- 5e Wu Y, Choy PY, Mao F, Kwong FY. Chem. Commun. 2013; 49: 689
- 6a Panda N, Jena AK. J. Org. Chem. 2012; 77: 9401
- 6b Li X, Shi X, Fang M. J. Org. Chem. 2013; 78: 9499
- 6c Nakanishi M, Bolm C. Adv. Synth. Catal. 2007; 349: 861
- 7 For Co(II), see: Zhang F, Du P, Chen J, Wang H, Luo Q, Wan X. Org. Lett. 2014; 16: 1932
- 8 For Rh(II), see: Lurain AE, Maestri A, Kelli AR, Carroll PJ, Walsh PJ. J. Am. Chem. Soc. 2004; 126: 13622
- 9 For Au(III), see: Xing D, Guan B, Cai G, Fang Z, Yang L, Shi Z. Org. Lett. 2006; 8: 693
- 10a Malik P, Chakraborty D. Synthesis 2010; 3736
- 10b Bonvin Y, Callens E, Larrosa I, Henderson DA, Oldham J, Burton AJ, Barrett AG. M. Org. Lett. 2005; 7: 4549
- 11a Vadagaonkar KS, Kalmode HP, Prakash S, Chaskar AC. Synlett 2015; 26: 1677
- 11b Reddi RN, Prasad A. Org. Lett. 2014; 16: 5674
- 11c Aruri H, Singh U, Kumar S, Kushwaha M, Gupta AP, Vishwakarma RA, Singh PP. Org. Lett. 2016; 18: 3638
- 11d Singh R, Allam BK, Singh N, Kumari K, Singh SK, Singh KN. Org. Lett. 2015; 17: 2656
- 11e Lei X, Zheng L, Zhang C, Shi X, Chen Y. J. Org. Chem. 2018; 83: 1772
- 11f Meesin J, Katrun P, Pareseecharoen C, Pohmakotr M, Reutrakul V, Soorukram D, Kuhakam C. J. Org. Chem. 2016; 81: 2744
- 11g Jiang H, Huang H, Cao H, Qi C. Org. Lett. 2010; 12: 5561
- 11h Wan C, Gao L, Wang Q, Zhang J, Wang Z. Org. Lett. 2010; 12: 3902
- 11i Gao W.-C, Hu F, Huo Y.-M, Chang H.-H, Li X, Wei W.-L. Org. Lett. 2015; 17: 3914
- 11j Ilangovan A, Satish G. J. Org. Chem. 2014; 79: 4984
- 11k Zhang J, Zhu D, Yu C, Wan C, Wang Z. Org. Lett. 2010; 12: 2841
- 11l Gupta A, Deshmuk MS, Jain N. J. Org. Chem. 2017; 82: 4748
- 12 For NIS, see: Yan Y, Zhang Y, Zha Z, Wang Z. Org. Lett. 2013; 15: 2274
- 13 For CAN, see: Kamakar K, Shangkar J, Murthy SN, Ramesch K, Nageshwar YV. D. Synlett 2011; 1089
- 14a Shimojima Y, Shirai T, Baba T, Hayashi H. J. Med. Chem. 1985; 28: 3
- 14b Shinkaruk S, Bennetau B, Babin P, Schmitter J.-M, Lamothe V, Bennetau-Pelisseroa C, Urdaci MC. Bioorg. Med. Chem. 2008; 16: 9383
- 14c Rioz-Martínez A, de Gonzalo G, Pazmiño DE. T, Fraaije MW, Gotor V. Eur. J. Org. Chem. 2009; 2526
- 14d Ramos HP, Simão MR, de Souza JM, Magalhães LG, Rodrigues V, Ambrósio SR, Said S. Nat. Prod. Res. 2013; 27: 2240
- 14e Guimaraes KG, de Freitas RP, Ruiz AL. T. G, Fiorito GF, de Carvalho JE, da Cunha EF. F, Ramalho TC, Alves RB. Eur. J. Med. Chem. 2016; 111: 103
- 15a Chaudhary NK, Pitt JI, Lacey E, Crombie A, Vuong D, Piggott AM, Karuso P. J. Nat. Prod. 2018; 81: 1517
- 15b Ye Y.-q, Xia C.-F, Yang J.-X, Qin Y, Zhou M, Gao X.-M, Du G, Yang H.-Y, Li X.-M, Hu Q.-F. Phytochem. Lett. 2014; 10: 215
- 16a Rioz-Martinez A, de Gonzalo G, Torres Pazmino DE, Fraaije MW, Gotor V. J. Org. Chem. 2010; 75: 2073
- 16b Fujita M, Mori K, Shimogaki M, Sugimura T. Org. Lett. 2012; 14: 1294
- 16c Chen J, Zhou L, Tan CK, Yeung Y.-Y. J. Org. Chem. 2012; 77: 999
- 16d Aspin S, Lopez-Suarez L, Larini P, Goutierre A.-S, Jazzar R, Baudoin O. Org. Lett. 2013; 15: 5056
- 16e Mangas-Sanchez J, Busto E, Gotor V, Gotor-Fernández V. Org. Lett. 2013; 15: 3872
- 16f Cheng G, Li T.-J, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 10950
- 16g Salvadori P, Superchi S, Minutolo F. J. Org. Chem. 1996; 61: 4190
- 16h Wang Z, Kuninobu Y, Kanai M. J. Am. Chem. Soc. 2015; 137: 6140
- 16i Chan C.-K, Tsai Y.-L, Chang M.-Y. Org. Lett. 2017; 19: 1870
- 16j Hojo D, Noguchi K, Hirano M, Tanaka K. Angew. Chem. Int. Ed. 2008; 47: 5820
- 17a Chang M.-Y, Hsiao Y.-T, Lai K.-H. J. Org. Chem. 2018; 83: 14110
- 17b Hsueh N.-C, Lai K.-S, Chang M.-Y. J. Org. Chem. 2018; 83: 11415
- 17c Hsueh N.-C, Chen H.-Y, Chang M.-Y. J. Org. Chem. 2017; 82: 13324
- 17d Chan C.-K, Hsueh N.-C, Tsai Y.-L, Chang M.-Y. J. Org. Chem. 2017; 82: 7077
- 18 CCDC 1947902 (6a) and 1947903 (11b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 19 For the review article on Cu(II)/tBuO2H-mediated reactions, see: Majji G, Rout SK, Rajamanickam S, Guin S, Patel BK. Org. Biomol. Chem. 2014; 12: 8178
- 20a Rout SK, Guin S, Gogoi A, Majji G, Patel BK. Org. Lett. 2014; 16: 1614
- 20b Ali W, Guin S, Rout SK, Gogoi A, Patel BK. Adv. Synth. Catal. 2014; 356: 3099
- 20c Ali W, Behera A, Guin S, Patel BK. J. Org. Chem. 2015; 80: 5625
- 20d Rajamanickam S, Sah C, Mir BA, Ghosh S, Sethi G, Yadav V, Venkataramani S, Patel B. J. Org. Chem. 2020; 85: 2118
- 21 Chang M.-Y, Lin S.-Y, Chan C.-K. Tetrahedron 2013; 69: 2933
For Cu(II), see:
For Ru(II), see:
For Pd(II), see:
For Fe(III), see:
For Bi(III), see:
For I2, see:
For biological activities of 1-oxoisochromans, see:
For natural products of 1-oxoisochromans, for clearanol I, see:
For periplanetin D, see:
For syntheses of 1-oxoisochromans, see:
Recent examples on synthetic applications of o-allyl arylaldehydes by the authors, see:
Selected reports of Patel group on t BuO2H-mediated reactions, see: