Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(14): 1372-1377
DOI: 10.1055/s-0040-1707150
DOI: 10.1055/s-0040-1707150
letter
Direct Synthesis of Enones by Visible-Light-Promoted Oxygenation of Trisubstituted Olefins Using Molecular Oxygen
This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI [Grant Numbers: 16K08154 and19K06991 (S.H.), 14J03297 (T.M.), and 17H03969 (A.N.)], the Tokyo Biochemical Research Foundation [Grant Number 16-B1-5 (S.H.)], and the Sumitomo Foundation [Grant Number 190444 (S.H.)]. We also than the Institute for Global Prominent Research, Chiba University, for providing financial support.Further Information
Publication History
Received: 10 April 2020
Accepted after revision: 25 May 2020
Publication Date:
18 June 2020 (online)
Abstract
A one-step synthesis of enones from olefins is described. The reaction was performed under visible-light irradiation in the presence of molecular oxygen and a photocatalyst. The reaction proceeded with various types of trisubstituted olefins to give enones in good yields with high regioselectivity. In particular, oxygen- and nitrogen-containing functional groups, heteroaromatic rings, and cyclopropanes were tolerated. Mechanistic studies and previous reports indicated that the active oxygen species generated in the reaction system is singlet oxygen.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707150.
- Supporting Information
-
References and Notes
- 1a Moiseev II, Vargaftik MN. Coord. Chem. Rev. 2004; 248: 2381
- 1b Nakamura A, Nakada M. Synthesis 2013; 45: 1421
- 2a Prein M, Adam W. Angew. Chem., Int. Ed. Engl. 1996; 35: 477
- 2b Stratakis M, Orfanopoulos M. Tetrahedron 2000; 56: 1595
- 3 Singh C, Pandey S, Saxena G, Srivastava N, Sharma M. J. Org. Chem. 2006; 71: 9057
- 4 Harada S, Nishida A. Asian J. Org. Chem. 2019; 8: 732
- 5 Weidmann V, Maison W. Synthesis 2013; 45: 2201
- 6 Mihelich ED, Eickhoff DJ. J. Org. Chem. 1983; 48: 4135
- 7 Kuga T, Sasano Y, Iwabuchi Y. Chem. Commun. 2018; 54: 798
- 8a Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
- 8b Piera J, Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
- 8c Seki Y, Oisaki K, Kanai M. Tetrahedron Lett. 2014; 55: 3738
- 8d Bian C, Singh AK, Niu L, Yi H, Lei A. Asian J. Org. Chem. 2017; 6: 386
- 8e Liang Y.-F, Jiao N. Acc. Chem. Res. 2017; 50: 1640
- 8f Wang D, Weinstein AB, White PB, Stahl SS. Chem. Rev. 2018; 118: 2636
- 8g Sterckx H, Morel B, Maes BU. W. Angew. Chem. Int. Ed. 2019; 58: 7946
- 9a DeRosa MC, Crutchley RJ. Coord. Chem. Rev. 2002; 233–234: 351
- 9b Clennan EL, Pace A. Tetrahedron 2005; 61: 6665
- 10a Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234 ; corrigendum: Chem. Rev. 2014, 114, 899
- 10b McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756
- 11a Wei W, Liu C, Yang D, Wen J, You J, Suo Y, Wang H. Chem. Commun. 2013; 49: 10239
- 11b Bag R, Sar D, Punniyamurthy T. Org. Lett. 2015; 17: 2010
- 11c Cheng J.-K, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
- 12a Que LJr, Tolman WB. Nature 2008; 455: 333
- 12b Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem. Rev. 2014; 114: 3659
- 12c Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Chem. Rev. 2017; 117: 2059
- 13 Unless otherwise noted E-olefins were used for the substrate scope experiments. See the Supplementary Information (SI) for the difference in reactivity between the E- and Z-isomers.
- 14 Demas JN, Harris EW, McBride RP. J. Am. Chem. Soc. 1977; 99: 3547
- 15 Liu D, Zhou H, Gu X, Shen X, Li P. Chin. J. Chem. 2014; 32: 117
- 16 Ouannes C, Wilson T. J. Am. Chem. Soc. 1968; 90: 6527
- 17 Yang H.-M, Liu M.-L, Tu J.-W, Miura-Stempel E, Campbell MG, Chuang GJ. J. Org. Chem. 2020; 85: 2040
- 18a Gollnick K, Schenck GO. Pure Appl. Chem. 1964; 9: 507
- 18b Foote CS. Acc. Chem. Res. 1968; 1: 104
- 19 Harding LB, Goddard WA. III. J. Am. Chem. Soc. 1980; 102: 439
- 20 Jefford CW, Kohmoto S, Boukouvalas J, Burger U. J. Am. Chem. Soc. 1983; 105: 6498
- 21a Yamaguchi K, Yabushita S, Fueno T, Houk KN. J. Am. Chem. Soc. 1981; 103: 5043
- 21b Stephenson LM, Grdina MJ, Orfanopoulos M. Acc. Chem. Res. 1980; 13: 419
- 22 Gorman AA, Gould IR, Hamblett I. J. Am. Chem. Soc. 1982; 104: 7098
- 23a Schaap AP, Recher SG, Faler GR, Villasenor SR. J. Am. Chem. Soc. 1983; 105: 1691
- 23b Poon TH. W, Pringle K, Foote CS. J. Am. Chem. Soc. 1995; 117: 7611
- 23c Maranzana A, Ghigo G, Tonachini G. J. Org. Chem. 2003; 68: 3125
- 24 Sheppard AN, Acevedo O. J. Am. Chem. Soc. 2009; 131: 2530
- 25 The role of TEMPO, which is not described in the proposed mechanism, is discussed in the SI.
- 26 See the SI for other trials on the conversion of peroxides into enone.
- 27 Enones 5a–m; General Procedure (0.3 mmol Scale) A test tube was charged with trisubstituted olefin 4 (0.3 mmol, 1.0 equiv.), Ru(bpy)3(PF6)2 (3.0 μmol, 1 mol%), Cu(OTf)2 (0.03 mmol, 10 mol%), and TEMPO (0.3 mmol, 1.0 equiv). The tube was then evacuated and backfilled with O2. An O2-filled balloon was attached to the tube and then DMA (3.0 mL, 0.1 M) was added from a syringe. The mixture was irradiated by a pair of 5 W blue LEDs (λmax = 450 nm) at 3–5 cm distance, cooled by a fan to maintain room temperature. When the reaction was complete (TLC), H2O was added to quench the reaction. The aqueous layer was extracted with Et2O (×3), and the combined organic layers were washed with H2O, dried (Na2SO4), filtered through a plug of cotton wool, and concentrated under reduced pressure. The residue was purified by flash column chromatography [silica gel, EtOAc–hexane (1:20 to 1:5)]. 4-Methyl-N-(3-oxo-4-phenylpent-4-en-1-yl)benzenesulfonamide (5a) Pale-yellow oil; yield: 73.2 mg (74%). IR (neat): 3296, 1682, 1598, 1162, 816 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.43 (s, 3 H), 3.01 (t, J = 5.6 Hz, 2 H), 3.24 (dt, J = 5.6, 7.2 Hz, 2 H), 5.13 (t, J = 7.2 Hz, 1H), 5.95 (s, 1 H), 6.14 (s, 1 H), 7.20–7.24 (m, 2 H), 7.31 (d, J = 8.4 Hz, 2 H), 7.34–7.36 (m, 3 H), 7.73 (d, J = 8.4 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.5, 38.4, 39.0, 126.3, 127.0, 128.26, 128.34, 128.4, 129.8, 136.5, 137.0, 143.4, 148.6, 200.4. HRMS (ESI): m/z [M + Na]+ calcd for C18H19NNaO3S: 352.0983; found: 352.0978.