Synlett 2020; 31(17): 1681-1690
DOI: 10.1055/s-0040-1707164
account
© Georg Thieme Verlag Stuttgart · New York

Procedure-Economical, Enantioselective Total Syntheses of Polycyclic Natural Products and Analogues Containing a 3a-Hydroxyhexahydropyrrolo[2,3-b]indole-2-carboxylic Acid Residue

Pei-Qiang Huang
Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. of China   Email: pqhuang@xmu.edu.cn
› Author Affiliations
The author is grateful for the financial support provided by the National Natural Science Foundation of China (Grant Nos. 21672176 and 21931010), the National Key R&D Program of China (Grant No. 2017YFA0207302), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of the Ministry of Education.
Further Information

Publication History

Received: 08 May 2020

Accepted after revision: 21 May 2020

Publication Date:
25 June 2020 (online)


Dedicated to the memory of the late Professor Shao-Min Zhou for his contribution to electrochemistry.

Abstract

The 3a-hydroxyhexahydropyrrolo[2,3-b]indole-2-carboxylic acid (HPIC) residue and its aza-analogue are found in many bioactive natural products. In this account, short divergent total syntheses of several such natural products, diastereomers and analogues are described. It is demonstrated that by appropriate combination of different efficient tactics such as biomimetic/bio-inspired synthesis, chemo/regioselective reactions, umpolung of regioselectivity and/or reactivity, and tandem reactions, the enantioselective syntheses of polycyclic molecules such as (+)-asperlicin E and (–)-robustanoids A and B can be achieved in a protecting-group-free and redox-economical manner, in only three to four steps starting from l-tryptophan.

1 Introduction

2 Strategic Considerations

2.1 Occurrence of HO-HPIC and HO-aza-HPIC Residues in Natural Products

2.2 Biosyntheses of HO-HPIC and HO-aza-HPIC Residues

2.3 Chemical Syntheses of HO-HPIC and HO-aza-HPIC Residues

3 Procedure-Economical Syntheses of HO-HPIC-Containing Natural Products

3.1 Protecting-Group-Free Syntheses of Asperlicin E, Its Diastereomer, and an Analogue

3.2 Divergent Syntheses of (–)-Robustanoids A and B, a Diastereomer, and Analogues

4 Conclusion and Future Perspectives

 
  • References

  • 1 Trost BM. Science 1983; 219: 245
    • 2a Li CJ, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
    • 2b Kümmerer K. Angew. Chem. Int. Ed. 2017; 56: 16420
  • 3 Efficiency in Natural Product Total Synthesis . Huang P.-Q, Yao Z.-J, Hsung RP. John Wiley & Sons; Hoboken: 2018
  • 4 Robinson R. J. Chem. Soc. Trans. 1917; 111: 762
  • 5 Poupon E, Nay B. Biomimetic Organic Synthesis . Wiley-VCH; Weinheim: 2011
  • 6 Hoffmann RW. Synthesis 2006; 3531
    • 7a Protecting-Group-Free Organic Synthesis: Improving Economy and Efficiency. Fernandes RA. John Wiley & Sons; Hoboken: 2018
    • 7b Hui C.-G, Chen F, Pu F, Xu J. Nat. Rev. Chem. 2019; 3: 85
    • 8a Roulland E. Angew. Chem. Int. Ed. 2011; 50: 1226
    • 8b Hickmann V, Alcarazo M, Fürstner A. J. Am. Chem. Soc. 2010; 132: 11042
  • 9 Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
  • 10 Huang P.-Q, Wang Y, Luo S.-P, Geng H, Ruan Y.-P, Wang A.-E. Tetrahedron Lett. 2015; 56: 1255
    • 11a Chen H, Huang Y.-H, Ye J.-L, Huang P.-Q. J. Org. Chem. 2019; 84: 9270
    • 11b Wu D.-P, He Q, Chen D.-H, Ye J.-L, Huang P.-Q. Chin. J. Chem. 2019; 37: 315
    • 11c Geng H, Huang P.-Q. Chin. J. Chem. 2019; 37: 811
    • 11d Ou W, Han F, Hu X.-N, Chen H, Huang P.-Q. Angew. Chem. Int. Ed. 2018; 57: 11354
    • 11e Fan T, Wang A, Li J.-Q, Ye J.-L, Zheng X, Huang P.-Q. Angew. Chem. Int. Ed. 2018; 57: 10352
    • 11f Ye J.-L, Zhu Y.-N, Geng H, Huang P.-Q. Sci. China Chem. 2018; 61: 687
  • 13 Herranz R. Med. Res. Rev. 2003; 23: 559
    • 14a Bock MG, Dipardo RM, Pitzenberger SM, Hominick CF, Springer JP, Freidinger RM. J. Org. Chem. 1987; 52: 1644
    • 14b Goetz MA, Monaghan RL, Chang RS. L, Ondeyka J, Chen TB, Lotti VJ. J. Antibiot. 1988; 39: 875
    • 14c Liesch JM, Hensens OD, Zink DL, Goetz MA. J. Antibiot. 1988; 41: 878
    • 14d Houck DR, Ondeyka J, Zink DL, Inamine E, Goetz MA, Hensens OD. J. Antibiot. 1988; 41: 882
  • 15 Han J, Niu S.-T, Liu Y, Gan L, Wang T, Lu C.-D, Yuan T. Org. Chem. Front. 2018; 5: 586
    • 16a Blanc A, Perrin DM. Peptide Sci. 2019; 111: e24082
    • 16b Kazuhiko M. Curr. Opin. Insect Sci. 2018; 30: 67
    • 16c Ma Y.-M, Liang X.-A, Kong Y, Jia B. J. Agric. Food Chem. 2016; 64: 6659
    • 16d Ruiz-Sanchis P, Savina SA, Albericio F, Álvarez M. Chem. Eur. J. 2011; 17: 1388
    • 17a Birch AJ, Wright JJ. Tetrahedron 1970; 26: 2329

    • For selected syntheses of brevianamide E, see:
    • 17b Kametani T, Kanaya N, Ihara M. J. Am. Chem. Soc. 1980; 102: 3974
    • 17c Ritchie R, Saxton JE. Tetrahedron 1981; 37: 4295
    • 17d Schkeryantz JM, Woo JC. G, Siliphaivanth P, Depew KM, Danishefsky SJ. J. Am. Chem. Soc. 1999; 121: 11964
    • 17e Zhao L, May JP, Huang J, Perrin DM. Org. Lett. 2012; 14: 90
    • 18a Deng X, Liang K.-J, Tong X.-G, Ding M, Li D.-S, Xia C.-F. Org. Lett. 2014; 16: 3276
    • 18b Lorenzo P, Álvarez R, de Lera ÁR. Eur. J. Org. Chem. 2014; 2557
    • 18c Ley SV, Cleator E, Hewitt PR. Org. Biomol. Chem. 2003; 1: 3492
  • 19 Buchel E, Martini U, Mayer A, Anke H, Sterner O. Tetrahedron 1998; 54: 5345
  • 20 Shibahara S, Matsubara T, Takahashi K, Ishihara J, Hatakeyama S. Org. Lett. 2011; 13: 4700
    • 21a Kamenecka TM, Danishefsky SJ. Angew. Chem. Int. Ed. 1998; 37: 2993
    • 21b Kamenecka TM, Danishefsky SJ. Angew. Chem. Int. Ed. 1998; 37: 2995
    • 21c Kamenecka TM, Danishefsky SJ. Chem. Eur. J. 2001; 7: 41
    • 22a Oelke AJ, Antonietti F, Bertone L, Cranwell PB, France DJ, Goss RJ. M, Hofmann T, Knauer S, Moss SJ, Skelton PC, Turner RM, Wuitschik G, Ley SV. Chem. Eur. J. 2011; 17: 4183
    • 22b Oelke AJ, France DJ, Hofmann T, Wuitschik G, Ley SV. Angew. Chem. Int. Ed. 2010; 49: 6139
    • 22c Yu S.-M, Hong W.-X, Wu Y, Zhong C.-L, Yao Z.-J. Org. Lett. 2010; 12: 1124
    • 22d Hong W.-X, Chen L.-J, Zhong C.-L, Yao Z.-J. Org. Lett. 2006; 8: 4919
  • 23 Baran PS, Guerrero CA, Corey EJ. J. Am. Chem. Soc. 2003; 125: 5628
  • 24 Hewitt PR, Cleator E, Ley SV. Org. Biomol. Chem. 2004; 2: 2415
  • 25 Schkeryantz JM, Woo JC. G, Danishefsky SJ. J. Am. Chem. Soc. 1995; 117: 7025
  • 26 Pettit GR, Tan R, Herald DL, Cerny RL, Williams MD. J. Org. Chem. 1994; 59: 1593
  • 27 Schwaebisch D, Tchabanenko K, Adlington RM, Cowley AM, Baldwin JE. Chem. Commun. 2004; 2552
  • 28 Steyn PS. Tetrahedron 1973; 29: 107
  • 29 Li W.-L, Yi Y.-H, Wu H.-M, Xu Q.-Z, Tang H.-F, Zhou D.-Z, Lin H.-W, Wang Z.-H. J. Nat. Prod. 2003; 66: 146
  • 30 Greenman KL, Hach DM, Van Vranken DL. Org. Lett. 2004; 6: 1713
    • 31a Haynes SW, Gao X, Tang Y, Walsh CT. J. Am. Chem. Soc. 2012; 134: 17444
    • 31b Gao X, Jiang W, Jimenez-Oses G, Choi MS, Houk KN, Tang Y, Walsh CT. Chem. Biol. 2013; 20: 870
    • 32a Saito I, Matsuura T, Nakagawa M, Hino T. Acc. Chem. Res. 1977; 10: 346
    • 32b Nakagawa M, Kato S, Kataoka S, Kodato S, Watanabe H, Okajima H, Hino T, Witkop B. Chem. Pharm. Bull. 1981; 29: 1013
    • 32c Nakagawa M, Yokoyama Y, Kato S, Hino T. Tetrahedron 1985; 41: 2125
    • 33a Savige WE. Aust. J. Chem. 1975; 28: 2275
    • 33b He F, Foxman BM, Snider BB. J. Am. Chem. Soc. 1998; 120: 6417
    • 34a Kishi Y, Nakatsuka S, Fukuyama T, Havel M. J. Am. Chem. Soc. 1973; 95: 6493
    • 34b Grubbs AW, Artman GD. III, Tsukamoto S, Williams RM. Angew. Chem. Int. Ed. 2007; 46: 2257
    • 35a Schkeryantz M, Woo JC. G, Danishefsky SJ. J. Am. Chem. Soc. 1995; 117: 7025

    • For the reactions of N-acylated indoles with dimethyldioxirane, see:
    • 35b Zhang X, Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
    • 35c Adam W, Ahrweiler M, Peters K, Schmiedeskamp B. J. Org. Chem. 1994; 59: 2733
    • 36a Murray RW. Chem. Rev. 1989; 89: 1187
    • 36b Adam W, Curci R, Edward JO. Acc. Chem. Res. 1989; 22: 205
    • 36c Oxidation of Organic Compounds by Dioxiranes . Adam W, Zhao C.-G, Saha-Möller CR, Jakka K. John Wiley & Sons; Hoboken: 2009
  • 37 Yang XY, Haug C, Yang YP, He ZS, Ye Y. Chin. Chem. Lett. 2003; 14: 130
  • 38 Crich D, Banerjee A. Acc. Chem. Res. 2007; 40: 151
    • 39a Ohno M, Spande TF, Witkop B. J. Am. Chem. Soc. 1968; 90: 6521
    • 39b López CS, Pérez-Balado C, Rodríguez-Graña P, de Lera ÁR. Org. Lett. 2008; 10: 77
    • 39c Espejo VR, Rainier JD. J. Am. Chem. Soc. 2008; 130: 12894
    • 39d Sun Y, Li R, Zhang W, Li A. Angew. Chem. Int. Ed. 2013; 52: 9201
  • 40 For an excellent review on the occurrence and biogenesis of enantiomeric natural products, see: Finefield JM, Sherman DH, Kreitman M, Williams RM. Angew. Chem. Int. Ed. 2012; 51: 4802
  • 41 For a general overview of approaches to the synthesis of natural product analogues, see: Bebbington MW. P. Chem. Soc. Rev. 2017; 46: 5059

    • For enantioselective syntheses of asperlicin C, see:
    • 42a Ref. 33b.
    • 42b Tseng M.-C, Lai C.-Y, Chu Y.-W, Chu Y.-H. Chem. Commun. 2009; 45: 445
    • 42c Tseng M.-C, Yang H.-Y, Chu Y.-H. Org. Biomol. Chem. 2010; 10: 419
    • 42d See also: Al-Said NH, Shawakfeh KQ, Ibrahim MI, Tayyem SH. ARKIVOC 2010; (ix): 282 ; in this report although l-Trp was used as a starting material, no optical rotation data nor enantiomeric purity of the products were reported
  • 43 For a review on the chemistry of isatoic anhydride, see: Coppola GM. Synthesis 1980; 505
    • 44a Wong HN. C. Acc. Chem. Res. 1989; 22: 145
    • 44b McMurry JE. Chem. Rev. 1989; 89: 1513
    • 44c Fürstner A, Bogdanović B. Angew. Chem. Int. Ed. 1996; 35: 2442
  • 45 Akazome M, Kondo T, Watanabe Y. J. Org. Chem. 1993; 58: 310
    • 46a Zhichkin P, Kesicki E, Treiberg J, Bourdon L, Ronsheim M, Ooi HC, White S, Judkins A, Fairfax D. Org. Lett. 2007; 9: 1415
    • 46b Zhichkin PE, Jin X.-M, Zhang H.-L, Peterson LH, Ramirez C, Snyder TS, Burton HS. Org. Biomol. Chem. 2010; 10: 1287
  • 47 Kumaraswamy S, Mukkanti K, Srinivas P. Synthesis 2014; 46: 189
  • 48 Shi D.-Q, Rong L.-C, Wang J.-X, Zhuang Q.-Y, Wang X.-S, Hu H.-W. Tetrahedron Lett. 2003; 44: 3199
  • 49 Lin W, Hu M.-H, Feng X, Fu L, Cao C.-P, Huang Z.-B, Shi D.-Q. Tetrahedron Lett. 2014; 55: 2238
  • 50 Davis FA, Chattopadhyay S, Towson JC, Lal S, Reddy T. J. Org. Chem. 1988; 53: 2087
    • 51a Coste A, Karthikeyan G, Couty F, Evano G. Synthesis 2009; 2927
    • 51b Malgesini B, Forte B, Borghi D, Quartieri F, Gennari C, Papeo G. Chem. Eur. J. 2009; 15: 7922
  • 52 Pettit GR, Searcy JD, Tan R, Cragg GM, Melody N, Knight JC, Chapuis JC. J. Nat. Prod. 2016; 79: 507
    • 53a Kornienko A, Evidente A. Chem. Rev. 2008; 108: 1982
    • 53b Ghavre M, Froese J, Pour M, Hudlicky T. Angew. Chem. Int. Ed. 2016; 55: 5642
  • 54 Van Goietsenoven G, Andolfi A, Lallemand B, Cimmino A, Lamoral-Theys D, Gras T, Abou-Donia A, Dubois J, Lefranc F, Mathieu V, Kornienko A, Kiss R, Evidente A. J. Nat. Prod. 2010; 73: 1223
    • 55a Wang Z.-X, Cao G.-A, Shi Y. J. Org. Chem. 1999; 64: 7646
    • 55b Cao G.-A, Wang Z.-X, Tu Y, Shi Y. Tetrahedron Lett. 1998; 39: 4425
  • 56 Trost BM, Dake GR. J. Am. Chem. Soc. 1997; 119: 7595

    • For reviews, see:
    • 57a Guo H, Fan Y.-C, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 57b Ye L.-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
    • 57c Lewandowska E. Tetrahedron 2007; 63: 2107
    • 58a Park K, You J.-M, Jeon S, Lee S. Eur. J. Org. Chem. 2013; 1973
    • 58b Kohen F, MacLean I, Stevenson R. J. Chem. Soc. C 1966; 1775
  • 59 Trost BM, Li C.-J. J. Am. Chem. Soc. 1994; 116: 10819
    • 60a Schreiber SL. Science 2000; 287: 1964
    • 60b Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis, Drug Discovery and Chemical Biology, 1st ed. Trabocchi A. John Wiley and Sons; Hoboken: 2013: 664