Subscribe to RSS
DOI: 10.1055/s-0040-1707183
Carbonyl-Photoredox/Metal Dual Catalysis: Applications in Organic Synthesis
We are grateful to the National Natural Science Foundation of China (grant numbers 21771131 and 21971182), the ‘Priority Academic Program Development’ of Jiangsu Higher Education Institutions, Scientific and Technologic Infrastructure of Suzhou (grant numbers SZS201708, SZS201905).Publication History
Received: 11 May 2020
Accepted after revision: 27 May 2020
Publication Date:
21 July 2020 (online)
Abstract
Photoredox/metal dual catalysis is a versatile tandem methodology to construct carbon–carbon and carbon–heteroatom bonds. The focus of this short review is the application of this technology to C(sp3)–C(sp3), C(sp3)–C(sp2), C(sp2)–C(sp2), C(sp2)–O, and C(sp3)–O bond formation induced by readily available and inexpensive carbonyl complexes as single electron transfer agents, photosensitizers, or hydrogen atom transfer agents.
1 Introduction
2 Homocoupling of Aryl Halides
3 Functionalization of C(sp3)–H Bonds
3.1 Dehydrogenation of Alkanes
3.2 Arylation/Alkylation
3.3 Carboxylation
3.4 Acylation
3.5 Hydroalkylation of Olefins
3.6 Hydroalkylation of Imines
4 Benzoylation of Aryl Bromides
5 Aryl Esterification
6 Oxidation of β-Keto Esters
7 Conclusions and Future Outlook
-
References
- 1a Fabry DC, Rueping M. Acc. Chem. Res. 2016; 49: 1969
- 1b Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J.-X, Wu L.-Z, Lei A. J. Am. Chem. Soc. 2015; 137: 9273
- 1c Huang H, Li X, Yu C, Zhang Y, Mariano PS, Wang W. Angew. Chem. Int. Ed. 2017; 56: 1500
- 1d Lang X, Zhao J, Chen X. Chem. Soc. Rev. 2016; 45: 3026
- 1e Abreu MD, Belmont P, Brachet E. Eur. J. Org. Chem. 2020; 1327
- 2a Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 2b Sharma UK, Gemoets HP. L, Schröder F, Noël T, Van der Eycken EV. ACS Catal. 2017; 7: 3818
- 2c Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 2d Cavedon C, Seeberger PH, Pieber B. Eur. J. Org. Chem. 2019; 1379
- 3a Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 3b Zheng S, Primer DN, Molander GA. ACS Catal. 2017; 7: 7957
- 3c Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal. 2018; 8: 7489
- 3d Yu W, Chen L, Tao J, Wang T, Fu J. Chem. Commun. 2019; 55: 5918
- 3e Gualandi A, Rodeghiero G, Faraone A, Patuzzo F, Marchini M, Calogero F, Perciaccante R, Jansen TP, Ceroni P, Cozzi PG. Chem. Commun. 2019; 55: 6838
- 3f Peng L, Li Z, Yin G. Org. Lett. 2018; 20: 1880
- 4a Kang B, Hong SH. Chem. Sci. 2017; 8: 6613
- 4b Vila C. ChemCatChem 2015; 7: 1790
- 4c Deng H.-P, Fan X.-Z, Chen Z.-H, Xu Q.-H, Wu J. J. Am. Chem. Soc. 2017; 139: 13579
- 4d Oderinde MS, Jones NH, Juneau A, Frenette M, Aquila B, Tentarelli S, Robbins DW, Johannes JW. Angew. Chem. Int. Ed. 2016; 55: 13219
- 4e Cheng W.-M, Shang R, Yu H.-Z, Fu Y. Chem. Eur. J. 2015; 21: 13191
- 4f Shu X.-z, Zhang M, He Y, Frei H, Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
- 5a McLean EB, Lee A.-L. Tetrahedron 2018; 74: 4881
- 5b Teegardin K, Day JI, Chan J, Weaver J. Org. Process Res. Dev. 2016; 20: 1156
- 5c Till NA, Smith RT, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 5701
- 5d Qu C, Zhang S, Du H, Zhu C. Chem. Commun. 2016; 52: 14400
- 5e Lang SB, O’Nele KM, Douglas JT, Tunge JA. Chem. Eur. J. 2015; 21: 18589
- 5f Tasker SZ, Jamison TF. J. Am. Chem. Soc. 2015; 137: 9531
- 5g Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
- 6a Mao R, Frey A, Balon J, Hu X. Nat. Catal. 2018; 1: 120
- 6b García-Domínguez A, Mondal R, Nevado C. Angew. Chem. Int. Ed. 2019; 58: 12286
- 6c Song F, Wang F, Guo L, Feng X, Zhang Y, Chu L. Angew. Chem. Int. Ed. 2020; 59: 177
- 6d Yang X.-L, Guo J.-D, Lei T, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2018; 20: 2916
- 6e González MJ, Breit B. Chem. Eur. J. 2019; 25: 15746
- 6f Paul A, Smith MD, Vannucci AK. J. Org. Chem. 2017; 82: 1996
- 7a Kuang Y, Wang K, Shi X, Huang X, Meggers E, Wu J. Angew. Chem. Int. Ed. 2019; 58: 16859
- 7b Jeon J, He Y.-T, Shin S, Hong S. Angew. Chem. Int. Ed. 2020; 59: 281
- 7c Bonesi SM, Fagnoni M, Albini A. J. Org. Chem. 2004; 69: 928
- 7d Kalsi D, Dutta S, Barsu N, Rueping M, Sundararaju B. ACS Catal. 2018; 8: 8115
- 7e Meng Q.-Y, Wang S, König B. Angew. Chem. Int. Ed. 2017; 56: 13426
- 8a Tóth BL, Tischler O, Novák Z. Tetrahedron Lett. 2016; 57: 4505
- 8b Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
- 8c Ruan L, Dong Z, Chen C, Wu S, Sun J. Chin. J. Org. Chem. 2017; 37: 2544
- 9 Luo J, Zhang J. ACS Catal. 2016; 6: 873
- 10a Arceo E, Montroni E, Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 12064
- 10b Nagatomo M, Yoshioka S, Inoue M. Chem. Asian J. 2015; 10: 120
- 10c Chen C. Org. Biomol. Chem. 2016; 14: 8641
- 10d Nikitas NF, Tzaras DI, Triandafillidi I, Kokotos CG. Green Chem. 2020; 22: 471
- 11a Shi Q, Ye J. Angew. Chem. Int. Ed. 2020; 59: 4998
- 11b Bume DD, Pitts CR, Ghorbani F, Harry SA, Capilato JN, Siegler MA, Lectka T. Chem. Sci. 2017; 8: 6918
- 11c Lipp A, Lahm G, Opatz T. J. Org. Chem. 2016; 81: 4890
- 12a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 12b Fujiya A, Nobuta T, Yamaguchi E, Tada N, Miura T, Itoh A. RSC Adv. 2015; 5: 39539
- 13a Timpe H.-J, Kronfeld K.-P. J. Photochem. Photobiol. A 1989; 46: 253
- 13b Leigh WJ, Arnold DR, Humphreys RW. R, Wong PC. Can. J. Chem. 1980; 58: 2537
- 13c Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
- 13d Kearns DR, Case WA. J. Am. Chem. Soc. 1966; 88: 5087
- 13e Arnold DR. Adv. Photochem. 1968; 6: 301
- 14 Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
- 15a Wagner PJ, Truman RJ, Scaiano JC. J. Am. Chem. Soc. 1985; 107: 7093
- 15b Kamijo S, Takao G, Kamijo K, Hirota M, Tao K, Murafuji T. Angew. Chem. Int. Ed. 2016; 55: 9695
- 15c Kamijo S, Hoshikawa T, Inoue M. Org. Lett. 2011; 13: 5928
- 15d Xia J.-B, Zhu C, Chen C. J. Am. Chem. Soc. 2013; 135: 17494
- 16a Ortica F, Romani A, Favaro G. J. Phys. Chem. A 1999; 103: 1335
- 16b Manfrotto C, Mella M, Freccero M, Fagnoni M, Albini A. J. Org. Chem. 1999; 64: 5024
- 16c Paul S, Guin J. Green Chem. 2017; 19: 2530
- 16d Ohkubo K, Hirose K, Fukuzumi S. Photochem. Photobiol. Sci. 2016; 15: 731
- 17a Kamijo S, Watanabe M, Kamijo K, Tao K, Murafuji T. Synthesis 2016; 48: 115
- 17b Bauer A, Westkamper F, Grimme S, Bach T. Nature 2005; 436: 1139
- 17c Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
- 18a Albini A. Synthesis 1981; 249
- 18b Tröster A, Alonso R, Bauer A, Bach T. J. Am. Chem. Soc. 2016; 138: 7808
- 18c Iyer A, Clay A, Jockusch S, Sivaguru J. J. Phys. Org. Chem. 2017; 30: e3738
- 19a Poplata S, Tröster A, Zou Y.-Q, Bach T. Chem. Rev. 2016; 116: 9748
- 19b Neveselý T, Daniliuc CG, Gilmour R. Org. Lett. 2019; 21: 9724
- 20a Hoffmann N. Synthesis 2016; 48: 1782
- 20b Schaefer CG, Peters KS. J. Am. Chem. Soc. 1980; 102: 7566
- 20c Yamashita T, Yasuda M, Watanabe M, Kojima R, Tanabe K, Shima K. J. Org. Chem. 1996; 61: 6438
- 21a Tripathi CB, Ohtani T, Corbett MT, Ooi T. Chem. Sci. 2017; 8: 5622
- 21b Harakat D, Pesch J, Marinkovic S, Hoffmann N. Org. Biomol. Chem. 2006; 4: 1202
- 21c Li L, Mu X, Liu W, Wang Y, Mi Z, Li C.-J. J. Am. Chem. Soc. 2016; 138: 5809
- 21d Bertrand S, Glapski C, Hoffmann N, Pete J.-P. Tetrahedron Lett. 1999; 40: 3169
- 22 Jones GH, Edwards DW, Par D. J. Chem. Soc., Chem. Commun. 1976; 969
- 23 Masuda Y, Ishida N, Murakami M. Eur. J. Org. Chem. 2016; 5822
- 24a Dewanji A, Krach PE, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 3566
- 24b Shen Y, Gu Y, Martin R. J. Am. Chem. Soc. 2018; 140: 12200
- 24c Zhang L, Si X, Yang Y, Zimmer M, Witzel S, Sekine K, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2019; 58: 1823
- 24d Si X, Zhang L, Hashmi AS. K. Org. Lett. 2019; 21: 6329
- 25a Ishida N, Masuda Y, Uemoto S, Murakami M. Chem. Eur. J. 2016; 22: 6524
- 25b Ishida N, Masuda Y, Imamura Y, Yamazaki K, Murakami M. J. Am. Chem. Soc. 2019; 141: 19611
- 26a Masuda Y, Ishida N, Murakami M. Chem. Asian J. 2019; 14: 403
- 26b Krach PE, Dewanji A, Yuan T, Rueping M. Chem. Commun. 2020; 56: 6082
- 27 Abadie B, Jardel D, Pozzi G, Toullec P, Vincent J.-M. Chem. Eur. J. 2019; 25: 16120
- 28 Li Y, Lei M, Gong L. Nat. Catal. 2019; 2: 1016
- 29 Schirmer TE, Wimmer A, Weinzierl FW. C, König B. Chem. Commun. 2019; 55: 10796
- 30 Zhu D.-L, Li H.-X, Xu Z.-M, Li H.-Y, Young DJ, Lang J.-P. Org. Chem. Front. 2019; 6: 2353
- 31 Ding W, Lu L.-Q, Zhou Q.-Q, Wei Y, Chen J.-R, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 63
- 32 Michelet B, Deldaele C, Kajouj S, Moucheron C, Evano G. Org. Lett. 2017; 19: 3576
- 33a Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
- 33b Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330
- 34a Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
- 34b Bosset C, Beucher H, Bretel G, Pasquier E, Queguiner L, Henry C, Vos A, Edwards JP, Meerpoel L, Berthelot D. Org. Lett. 2018; 20: 6003
- 34c Zhu X, Xie X, Li P, Guo J, Wang L. Org. Lett. 2016; 18: 1546
- 34d Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453
- 35a Nakajima K, Miyake Y, Nishibayashi Y. Acc. Chem. Res. 2016; 49: 1946
- 35b Gu Q.-S, Li Z.-L, Liu X.-Y. Acc. Chem. Res. 2020; 53: 170
- 35c Hu A, Guo J.-J, Pan H, Zuo Z. Science 2018; 361: 668
- 35d Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 35e Yang Y, Huang H, Zhang X, Zeng W, Liang Y. Synthesis 2013; 45: 3137
- 36 Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
- 37a Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
- 37b Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
- 38 Huang L, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 10333
- 39 Xue X.-S, Ji P, Zhou B, Cheng J.-P. Chem. Rev. 2017; 117: 8622
- 40a Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
- 40b Gui Y.-Y, Zhou W.-J, Ye J.-H, Yu D.-G. ChemSusChem 2017; 10: 1337
See also: