Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(22): 3461-3465
DOI: 10.1055/s-0040-1707191
DOI: 10.1055/s-0040-1707191
paper
Efficient Synthesis of O-tert-Propargylic Oximes via Nicholas Reaction
This work was supported by JSPS KAKENHI Grant Number JP16H00996 in Precisely Designed Catalysts with Customized Scaffolding and JP20H02731 (Grant-in-Aid for Scientific Research (B)) from MEXT Japan.Further Information
Publication History
Received: 26 May 2020
Accepted after revision: 09 June 2020
Publication Date:
21 July 2020 (online)
Abstract
A synthetic protocol to access O-tert-propargylic oximes derived from tertiary propargylic alcohols was established via Nicholas reaction. Thus, BF3·OEt2-mediated reaction between the dicobalt hexacarbonyl complex of tert-propargylic alcohols and p-nitrobenzaldoxime followed by decomplexation with cerium(IV) ammonium nitrate afforded the corresponding O-tert-propargylic oximes in good to high yields. The obtained O-tert-propargylic oximes were effectively converted into heterocycles, such as four-membered cyclic nitrones, oxazepines, and isoxazolines, by using π-Lewis acidic catalysts.
Key words
Nicholas reaction - alkynes - tertiary alcohols - heterocycles - gold catalysts - spirocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707191.
- Supporting Information
-
References
- 1 Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 2a Lipshutz BH. Chem. Rev. 1986; 86: 795
- 2b Baraldi PG, Barco A, Benetti S, Pollini GP, Simori D. Synthesis 1987; 857
- 3a Knight DW, Proctor AP, Clough JM. Synlett 2010; 628
- 3b Yeom H.-S, Lee E.-S, Shin S. Synlett 2007; 2292
- 3c Nakamura I, Onuma T, Kanazawa R, Nishigai Y, Terada M. Org. Lett. 2014; 16: 4198
- 4a Foot OF, Knight DW, Low AC. L, Li YF. Tetrahedron Lett. 2007; 48: 647
- 4b Okitsu T, Sato K, Potewar TM, Wada A. J. Org. Chem. 2011; 76: 3438
-
5a
Nakamura I,
Araki T,
Zhang D,
Kudo Y,
Kwon E,
Terada M.
Org. Lett. 2011; 13: 3616
- 5b Nakamura I, Kudo Y, Araki T, Zhang D, Kwon E, Terada M. Synthesis 2012; 44: 1542
-
6
Nakamura I,
Kudo Y,
Terada M.
Angew. Chem. Int. Ed. 2013; 52: 7536
- 7a Nakamura I, Zhang D, Terada M. J. Am. Chem. Soc. 2010; 132: 7884
- 7b Nakamura I, Okamoto M, Sato Y, Terada M. Angew. Chem. Int. Ed. 2012; 51: 10816
- 7c Nakamura I, Sato Y, Takeda K, Terada M. Chem. Eur. J. 2014; 20: 10214
- 7d Nakamura I, Gima S, Kudo Y, Terada M. Angew. Chem. Int. Ed. 2015; 54: 7154
- 7e Gima S, Nakamura I, Terada M. Eur. J. Org. Chem. 2017; 4375
- 7f Gima S, Shiga K, Terada M, Nakamura I. Synlett 2019; 30: 393
- 7g Shiga K, Terada M, Nakamura I. Chem. Sci. 2019; 10: 5283
- 8a Somanadhan B, Loke W.-K, Sim M.-K, Go M.-L. Bioorg. Med. Chem. 2002; 10: 207
- 8b Proctor AJ, Beautement K, Clough JM, Knight DW, Li Y. Tetrahedron Lett. 2006; 47: 5151
- 9a Gaudemer F, Gaudemer A. Tetrahedron Lett. 1980; 21: 1445
- 9b Sabbasani V, Lee D. Org. Lett. 2015; 17: 4878
- 10a Reddy CR, Radhika L, Kumar TP, Chandrasekhar S. Eur. J. Org. Chem. 2011; 5967
- 10b Ren Z, Mo F, Dong G. J. Am. Chem. Soc. 2012; 134: 16991
- 10c Kang T, Kim H, Kim JG, Chang S. Chem. Commun. 2014; 50: 12073
- 11a Choong IC, Ellman JA. J. Org. Chem. 1999; 64: 6528
- 11b Sun R, Li Y, Lü M, Xiong L, Wang Q. Bioorg. Med. Chem. Lett. 2010; 20: 4693
- 12a Lockwood RF, Nicholas KM. Tetrahedron Lett. 1977; 18: 4163
- 12b Teobald BJ. Tetrahedron 2002; 58: 4133
- 12c Diaz DD, Betancort JM, Martin VS. Synlett 2007; 343
- 13 Kotha S, Deb AC, Lahiri K, Manivannan E. Synthesis 2009; 165
- 14 Chi KM, Shin H.-K, Hampden-Smith MJ, Duesler EN, Kodas TT. Polyhedron 1991; 10: 2293
- 15 Mézailles N, Ricard L, Gagosz F. Org. Lett. 2005; 7: 4133