Subscribe to RSS
DOI: 10.1055/s-0040-1707294
Record-Breaking Steric Crowding in Trialkylamines Prepared by Oxidative Ring Opening
Generous support by the Deutsche Forschungsgemeinschaft (BA903/17-1) is gratefully acknowledged.
Dedicated to Professor Harald Günther on the occasion of his 85th birthday
Abstract
Epoxidation of olefinic heterocyclic amines and subsequent acid-catalyzed hydrolysis or alternatively the direct dihydroxylation with the help of osmium tetroxide led to diols, which underwent ring cleavage in the presence of lead tetraacetate to give 3-isopropyl-2,2,4,4-tetramethyl-3-azahexanedial and 3-tert-butyl-2,2,4,4-tetramethyl-3-azapentanedial. Whereas the former dialdehyde is a highly unstable model compound because of a rapid intramolecular aldol reaction, the latter product proves to be isolable at room temperature. Furthermore, this compound is the first open-chain tri-tert-alkylamine establishing in a new record of steric crowding in tertiary amines. Strong tendencies to a Hofmann-like elimination reaction or to ring-closing reactions were observed when the aldehyde units of 3-tert-butyl-2,2,4,4-tetramethyl-3-azapentanedial were transformed into other functionalities, since both types of reactions led to a significantly decrease of the steric stress.
Publication History
Received: 01 July 2020
Accepted after revision: 04 August 2020
Article published online:
05 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Substitution on the Amine Nitrogen, Science of Synthesis, Vol. 40a. Enders D. Thieme; Stuttgart: 2008
- 2a Kampmann D, Stuhlmüller G, Simon R, Cottet F, Leroux F, Schlosser M. Synthesis 2005; 1028
- 2b Dagonneau M, Kagan ES, Mikhailov VI, Rozantsev EG, Sholle VD. Synthesis 1984; 895
- 3 Hünig S, Kiessel M. Chem. Ber. 1958; 91: 380
- 4 Barriga S. Synlett 2001; 563
- 5a Stone TJ, Buckman T, Nordio PL, McConnell HM. Proc. Natl. Acad. Sci. U.S.A. 1965; 54: 1010
- 5b Keana JF. W. Chem. Rev. 1978; 78: 37
- 6a Step EN, Turro NJ, Gande ME, Klemchuk PP. Macromolecules 1994; 27: 2529
- 6b Dagonneau M, Ivanov VB, Rozantsev EG, Sholle VD, Kagan ES. J. Macromol. Sci., Polym. Rev. 1982; 22: 169
- 6c Kurumada T, Ohsawa H, Fujita T, Toda T, Yoshioka T. J. Polym. Sci., Polym. Chem. 1985; 23: 1477
- 7 Iashin V, Chernichenko K, Pápai I, Repo T. Angew. Chem. Int. Ed. 2016; 55: 14146
- 8a Hiltmann R, Wollweber H, Wirth W, Gösswald R. Angew. Chem. 1960; 72: 1001
- 8b Kürti L. Science 2015; 348: 863
- 9a Sartori G, Savage DW. Ind. Eng. Chem. Fundam. 1983; 22: 239
- 9b Hook RJ. Ind. Eng. Chem. Res. 1997; 36: 1779
- 10a Chaplinski V, de Meijere A. Angew. Chem. Int. Ed. 1996; 35: 413
- 10b Druzhinin SI, Dubbaka SR, Knochel P, Kovalenko SA, Mayer P, Senyushkina T, Zachariasse KA. J. Phys. Chem. A 2008; 112: 2749
- 10c Yang M, Albrecht-Schmitt T, Cammarata V, Livant P, Makhanu DS, Sykora R, Zhu W. J. Org. Chem. 2009; 74: 2671
- 11a March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. McGraw-Hill; Tokyo: 1968: 123
- 11b Smith MB. March’s Advanced Organic Chemistry, 7th ed. Wiley; Hoboken: 2013: 206
- 12a Bock H, Göbel I, Havlas Z, Liedle S, Oberhammer H. Angew. Chem. Int. Ed. 1991; 30: 187
- 12b Wong TC, Collazo LR, Guziec FS. Jr. Tetrahedron 1995; 51: 649
- 12c Anderson JE, Casarini D, Lunazzi L. J. Org. Chem. 1996; 61: 1290
- 12d Boese R, Bläser D, Antipin MY, Chaplinski V, de Meijere A. Chem. Commun. 1998; 781
- 13 Banert K, Heck M, Ihle A, Kronawitt J, Pester T, Shoker T. J. Org. Chem. 2018; 83: 5138
- 14 Banert K, Seifert J. Org. Chem. Front. 2019; 6: 3517
- 15 For an alternative synthesis of 17b, see: Zakrzewski J. Synth. Commun. 1988; 18: 2135
- 16 Pauly H. Justus Liebigs Ann. Chem. 1902; 322: 77
- 17a Nazarski R, Skolimowski J, Skowronski R. Pol. J. Chem. 1979; 53: 821
- 17b Cygler M, Dobrynin K, Grabowski MJ, Nazarski R, Skowronski R. J. Chem. Soc., Perkin Trans. 2 1985; 1495
- 18 Bordeaux D, Gagnaire G, Lajzérowicz J, Commandeur G. Acta Crystallogr., Sect. C 1983; 39: 1656