Synthesis, Inhaltsverzeichnis Synthesis 2020; 52(24): 3751-3763DOI: 10.1055/s-0040-1707342 short review © Georg Thieme Verlag Stuttgart · New York Reductive Cross-Coupling of Vinyl Electrophiles Xiaobo Pang , Xuejing Peng , Xing-Zhong Shu ∗ State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China eMail: shuxingzh@lzu.edu.cn › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract The synthesis of alkenes (olefins) is a central subject in the synthetic community. The transition-metal-catalyzed reductive cross-coupling of vinyl electrophiles has emerged as a promising tool to produce alkenes with improved flexibility, structural complexity, and functionality tolerance. In this review, we summarized the progress in this field with respect to cross-electrophile couplings and reductive Heck reactions using vinyl electrophiles. 1 Introduction 2 Cross-Electrophile Coupling of Vinyl Electrophiles 3 Reductive Heck Reaction of Vinyl Electrophiles 4 Summary and Outlook Key words Key wordsalkenes - cross-coupling - reductive coupling - cross-electrophile - Heck reaction - vinylation - nickel - cobalt Volltext Referenzen References 1a Larock RC. Comprehensive Organic Transformations, 2nd ed. Wiley; New York: 1999 1b Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Chem. Rev. 2014; 114: 1 1c Zweig JE, Kim DE, Newhouse TR. Chem. Rev. 2017; 117: 11680 2 For a review of the synthesis of alkenes see: Science of Synthesis, Vol. 47a and 47b. de Meijere A. Thieme; Stuttgart: 2009 3a Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PG. Wiley-VCH; New York: 1998 3b Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014 Recent elegant reviews, see: 4a Knappke CE. I, Grupe S, Gartner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828 4b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242 4c Weix DJ. Acc. Chem. Res. 2015; 48: 1767 4d Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411 4e Lucas EL, Jarvo ER. Nat. Rev. Chem. 2017; 1: 65 4f Richmond E, Moran J. Synthesis 2018; 50: 499 5a Wurtz A. Ann. Chem. Pharm. 1855; 96: 364 5b Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174 Some pioneering work: 6a Gomes P, Gosmini C, Périchon J. Org. Lett. 2003; 5: 1043 6b Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920 6c Wang S, Qian Q, Gong H. Org. Lett. 2012; 14: 3352 6d Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442 7a Heck RF. Acc. Chem. Res. 1979; 12: 146 7b Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009 7c The Mizoroki–Heck Reaction . Oestreich M. Wiley; Chichester: 2009 7d Oxtoby LJ, Gurak JA. Jr, Wisniewski SR, Eastgate MD, Engle KM. Trends Chem. 2019; 1: 572 8a Czaplik WM, Mayer M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2009; 48: 607 8b Krasovskiy A, Duplais C, Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 15592 8c Cao Z.-C, Luo Q.-Y, Shi Z.-J. Org. Lett. 2016; 18: 5978 9 Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894 10 Xiao L.-J, Ye M.-C, Zhou Q.-L. Synlett 2019; 30: 361 11a Conan A, Sibille S, d’Incan E, Périchon J. J. Chem. Soc., Chem. Commun. 1990; 48 11b Durandetti M, Nedelec J.-Y, Périchon J. J. Org. Chem. 1996; 61: 1748 11c Cannes C, Condon S, Durandetti M, Périchon J, Nedelec J.-Y. J. Org. Chem. 2000; 65: 4575 12a Gosmini C, Bégouin J.-M, Moncomble A. Chem. Commun. 2008; 3221 12b Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435 13 Gomes P, Gosmini C, Périchon J. J. Org. Chem. 2003; 68: 1142 14 Moncomble A, Le Floch P, Lledos A, Gosmini C. J. Org. Chem. 2012; 77: 5056 15a Bassler DP, Alwali A, Spence L, Beale O, Beng TK. J. Organomet. Chem. 2015; 780: 6 15b Beng TK, Sincavage K, Silaire AW. V, Alwali A, Bassler DP, Spence LE, Beale O. Org. Biomol. Chem. 2015; 13: 5349 16 Cai Y, Benischke AD, Knochel P, Gosmini C. Chem. Eur. J. 2017; 23: 250 17 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299 18 Everson DA, Jones BA, Weix DJ. J. Am. Chem. Soc. 2012; 134: 6146 19 Johnson KA, Biswas S, Weix DJ. Chem. Eur. J. 2016; 22: 7399 20a Gu J, Qiu C, Qian Q, Lin K, Gong H. Synthesis 2017; 49: 1867 20b Qiu C, Yao K, Zhang X, Gong H. Org. Biomol. Chem. 2016; 14: 11332 21 Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192 22 Liu J, Gong H. Org. Lett. 2018; 20: 7991 23 Liu J, Lei C, Gong H. Sci. China Chem. 2019; 62: 1492 24 Wang X, Ma G, Peng Y, Pitsch CE, Moll BJ, Ly TD, Wang X, Gong H. J. Am. Chem. Soc. 2018; 140: 14490 25 Lu X, Wang Y, Zhang B, Pi J.-J, Wang X.-X, Gong T.-J, Xiao B, Fu Y. J. Am. Chem. Soc. 2017; 139: 12632 26 Xu H, Zhao C, Qian Q, Deng W, Gong H. Chem. Sci. 2013; 4: 4022 27 Yan X.-B, Li C.-L, Jin W.-J, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529 28a Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2019; 141: 820 28b Chen H, Ye Y, Tong W, Fang J, Gong H. Chem. Commun. 2020; 56: 45 28c Friese FW, Studer A. Angew. Chem. Int. Ed. 2019; 58: 9561 29 Gao M, Sun D, Gong H. Org. Lett. 2019; 21: 1645 30 Ye Y, Chen H, Yao K, Gong H. Org. Lett. 2020; 22: 2070 31a Noble A, McCarver SJ, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624 31b Yu W, Chen L, Tao J, Wang T, Fu J. Chem. Commun. 2019; 55: 5918 31c Zhou Q.-Q, Dusel SJ. S, Lu L.-Q, König B, Xiao W.-J. Chem. Commun. 2019; 55: 107 32a Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365 32b Suzuki N, Hofstra JL, Poremba KE, Reisman SE. Org. Lett. 2017; 19: 2150 32c Hofstra JL, Cherney AH, Ordner CM, Reisman SE. J. Am. Chem. Soc. 2018; 140: 139 32d DeLano TJ, Reisman SE. ACS Catal. 2019; 9: 6751 33 Ackerman LK. G, Anka-Lufford LL, Naodovic M, Weix DJ. Chem. Sci. 2015; 6: 1115 34 Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793 35 Liu J, Ren Q, Zhang X, Gong H. Angew. Chem. Int. Ed. 2016; 55: 15544 36a Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486 36b Rosen BM, Quasdorf KW, Wilkson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346 36c Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19 36d Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081 36e Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717 36f Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344 37 Jia X.-G, Guo P, Duan J, Shu X.-Z. Chem. Sci. 2018; 9: 640 38a Duan J, Du Y.-F, Pang X, Shu X.-Z. Chem. Sci. 2019; 10: 8706 38b Pan F.-F, Guo P, Li C.-L, Su P, Shu X.-Z. Org. Lett. 2019; 21: 3701 38c Tian Z.-X, Qiao J.-B, Xu G.-L, Pang X, Qi L, Ma W.-Y, Zhao Z.-Z, Duan J, Du Y.-F, Su P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 7637 38d He R.-D, Li C.-L, Pan Q.-Q, Guo P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 12481 39 See ref 2 and: Preparation of Alkenes . Williams JM. J. Oxford University Press; Oxford: 1996 40 Pearson RG, Figdore PE. J. Am. Chem. Soc. 1980; 102: 1541 41a Prinsell MR, Everson DA, Weix DJ. Chem. Commun. 2010; 46: 5743 41b Do H.-Q, Chandrashekar ER. R, Fu GC. J. Am. Chem. Soc. 2013; 135: 16288 41c Liang Z, Xue W, Lin K, Gong H. Org. Lett. 2014; 16: 5620 42 Arendt KM, Doyle AG. Angew. Chem. Int. Ed. 2015; 54: 9876 43 Chen H, Sun S, Liao X. Org. Lett. 2019; 21: 3625 44 Qiao J.-B, Zhao Z.-Z, Zhang Y.-Q, Yin K, Tian Z.-X, Shu X.-Z. Org. Lett. 2020; 22: 5085 45a Zhang Y, Rovis T. J. Am. Chem. Soc. 2004; 126: 15964 45b Malapit CA, Bour JR, Brigham CE, Sanford MS. Nature 2018; 563: 100 46a Ackerman LK. G, Lovell MM, Weix DJ. Nature 2015; 524: 454 46b Olivares AM, Weix DJ. J. Am. Chem. Soc. 2018; 140: 2446 A review: 47a Ping Y, Kong W. Synthesis 2020; 52: 979 Selected work: 47b Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364 47c Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722 47d Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198 48 Ma T, Chen Y, Li Y, Ping Y, Kong W. ACS Catal. 2019; 9: 9127 Selected recent elegant work: 49a Li B.-J, Xu L, Wu Z.-H, Guan B.-T, Sun C.-L, Wang B.-Q, Shi Z.-J. J. Am. Chem. Soc. 2009; 131: 14656 49b Gärtner D, Stein AL, Grupe S, Arp J, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 10545 49c Li J, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 11436 49d Li J, Ren Q, Cheng X, Karaghiosoff K, Knochel P. J. Am. Chem. Soc. 2019; 141: 18127 50 Gomes P, Gosmini C, Périchon J. Tetrahedron 2003; 59: 2999 51 Amatore M, Gosmini C, Périchon J. Eur. J. Org. Chem. 2005; 989 52a Peng Y, Luo L, Yan C.-S, Zhang J.-J, Wang Y.-W. J. Org. Chem. 2013; 78: 10960 52b Xu X.-B, Liu J, Zhang J.-J, Wang Y.-W, Peng Y. Org. Lett. 2013; 15: 550 52c Luo L, Zhang J.-J, Ling W.-J, Shao Y.-L, Wang Y.-W, Peng Y. Synthesis 2014; 46: 1908 52d Peng Y, Xiao J, Xu X.-B, Duan S.-M, Ren L, Shao Y.-L, Wang Y.-W. Org. Lett. 2016; 18: 5170 52e Xiao J, Cong X.-W, Yang G.-Z, Wang Y.-W, Peng Y. Org. Lett. 2018; 20: 1651 52f Luo L, Zhai X.-Y, Wang Y.-W, Peng Y, Gong H. Chem. Eur. J. 2019; 25: 989 53 Li Y, Ding Z, Lei A, Kong W. Org. Chem. Front. 2019; 6: 3305 54 McGeough CP, Strom AE, Jamison TF. Org. Lett. 2019; 21: 3606 55 Burns B, Grigg R, Ratananukul P, Sridharan V, Stevenson P, Worakun T. Tetrahedron Lett. 1988; 29: 4329 56 Hou L, Yuan Y, Tong X. Org. Biomol. Chem. 2017; 15: 4803 57 Liang R.-X, Yang R.-Z, Liu R.-R, Jia Y.-X. Org. Chem. Front. 2018; 5: 1840 58 Arcadi A, Marinelli F, Bernocchi E, Cacchi S, Ortar G. J. Organomet. Chem. 1989; 368: 249 59 Ozawa F, Kobatake Y, Kubo A, Hayashi T. J. Chem. Soc., Chem. Commun. 1994; 1323 60 Saini V, O’Dair M, Sigman MS. J. Am. Chem. Soc. 2015; 137: 608 61 Ghosh T. ChemistrySelect 2019; 4: 4747 62 Ichikawa M, Takahashi M, Aoyagi S, Kibayashi C. J. Am. Chem. Soc. 2004; 126: 16553 63 Dounay AB, Humphreys PG, Overman LE, Wrobleski AD. J. Am. Chem. Soc. 2008; 130: 5368 64 Gao P, Cook SP. Org. Lett. 2012; 14: 3340 65 Hu P, Chi HM, DeBacker KC, Gong X, Keim JH, Hsu IT, Snyder SA. Nature 2019; 569: 703 66 Yu S, Berner OM, Cook JM. J. Am. Chem. Soc. 2000; 122: 7827 67 Zheng Y, Yue B.-B, Wei K, Yang Y.-R. J. Org. Chem. 2018; 83: 4867