Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(24): 3865-3873
DOI: 10.1055/s-0040-1707863
DOI: 10.1055/s-0040-1707863
special topic
Iridium(III)-Catalyzed Difluoroalkylation–Bicyclization of 1,7-Enynes toward Benzo[a]fluoren-5-ones under Visible-Light Photoredox Conditions
We are grateful for financial support from the National Natural Science Foundation of China (NSFC) (Grant No. 21971090).Further Information
Publication History
Received: 05 April 2020
Accepted after revision: 07 May 2020
Publication Date:
16 June 2020 (online)
Published as part of the Special Topic Recent Advances in Metal-Catalyzed Ring Construction
Abstract
A new visible-light-induced Ir(III)-catalyzed difluoroalkylation–bicyclization of 1,7-enynes with ethyl 2-bromo-2,2-difluoroacetate (BrCF2CO2Et) is described, furnishing a wide range of difluoromethyl-containing benzo[a]fluoren-5-ones in good to excellent yields. The reaction is operationally simple, proceeds with high efficiency under mild conditions, and shows excellent functional group compatibility.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707863.
- Supporting Information
-
References
- 1a Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
- 1b Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 1c Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
- 1d Prakash GK. S, Hu J. Acc. Chem. Res. 2007; 40: 921
- 1e Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 1f Zhou Q, Ruffoni A, Gianatassio R, Fujiwara Y, Sella E, Shabat D, Baran PS. Angew. Chem. Int. Ed. 2013; 52: 3949
- 1g Feng Z, Min Q.-Q, Xiao Y.-L, Zhang B, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 1669
- 1h Pan X, Xia H, Wu J. Org. Chem. Front. 2016; 3: 1163
- 1i Jung J, Kim E, You Y. Adv. Synth. Catal. 2014; 356: 2741
- 2a Erickson JA, McLoughlin JI. J. Org. Chem. 1995; 60: 1626
- 2b Hope HR, Heuvelman D, Duffin K, Smith C, Zablocki J, Schilling R, Hegde S, Lee L, Witherbee B, Baganoff M, Bruce C, Tall AR, Krul E, Glenn K, Connolly DT. J. Lipid Res. 2000; 41: 1604
- 2c Romanenko VD, Kukhar VP. Chem. Rev. 2006; 106: 3868
- 3a Ni C, Zhu L, Hu J. Acta Chim. Sin. 2015; 73: 90
- 3b Belhomme M.-C, Besset T, Poisson T, Pannecoucke X. Chem. Eur. J. 2015; 21: 12836
- 3c Zhao Q, Hao W.-J, Shi H.-N, Xu T, Tu S.-J, Jiang B. Org. Lett. 2019; 21: 9784
- 3d Mikhaylov DY, Budnikova YH. Russ. Chem. Rev. 2013; 82: 835
- 3e Barata-Vallejo S, Lantaño B, Postigo A. Chem. Eur. J. 2014; 20: 16806
- 4a Zhu J, Zhang W, Zhang L, Liu J, Zheng J, Hu J. J. Org. Chem. 2010; 75: 5505
- 4b Shi S.-L, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 1646
- 4c Shen Z.-J, Wang S.-C, Hao W.-J, Yang S.-Z, Tu S.-J, Jiang B. Adv. Synth. Catal. 2019; 361: 3837
- 5 Ke M, Song Q.-L. Adv. Synth. Catal. 2017; 359: 384
- 6 Chen H, Li P, Wang M, Wang L. Org. Lett. 2016; 18: 4794
- 7 Nie X, Cheng C, Zhu G. Angew. Chem. Int. Ed. 2017; 56: 1898
- 8a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
- 8b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 8c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 8d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 8e Hopkinson MN, Sahoo B, Li J, Glorius F. Chem. Eur. J. 2014; 20: 3874
- 8f Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
- 8g Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2015; 54: 6046
- 8h Rong J, Deng L, Tan P, Ni C, Gu Y, Hu J. Angew. Chem. Int. Ed. 2016; 55: 2743
- 8i Xie J, Zhang T, Chen F, Mehrkens N, Rominger F, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 2934
- 8j Xu P, Wang G, Zhu Y, Li W, Cheng Y, Li S, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 2939
- 8k Huang L, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 4808
- 9a Xie L.-Y, Fang T.-G, Tan J.-XT, Zhang B, Cao Z, Yang L.-H, He W.-M. Green Chem. 2019; 21: 3858
- 9b Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
- 9c Meng X.-X, Kang Q.-Q, Zhang J.-Y, Li Q, Wei W.-T, He W.-M. Green Chem. 2020; 22: 1388
- 9d Liu Q, Wang L, Yue H, Li J-S, Luo Z, Wei W. Green Chem. 2019; 21: 1609
- 9e Wei W, Bao P, Yue H, Liu S, Wang L, Li Y, Yang D. Org. Lett. 2018; 20: 5291
- 9f Wei W, Wang L, Yue H, Bao P, Liu W, Hu C, Yang D, Wang H. ACS Sustainable Chem. Eng. 2018; 6: 17252
- 10 Gao F, Yang C, Ma N, Gao G.-L, Li D, Xia W. Org. Lett. 2016; 18: 600
- 11a Zhao Q, Tu S.-J, Jiang B. Acta Chim. Sin. 2019; 77: 927
- 11b Shen Z.-J, Shi H.-N, Hao W.-J, Tu S.-J, Jiang B. Chem. Commun. 2018; 54: 11542
- 11c Huang M.-H, Hao W.-J, Jiang B. Chem. Asian J. 2018; 13: 2958
- 11d Zhu Y.-L, Zhu C.-F, Zhou P, Hao W.-J, Wang D.-C, Tu S.-J, Jiang B. J. Org. Chem. 2018; 83: 9641
- 11e Shen Z.-J, Wu Y.-N, He C.-L, He L, Hao W.-J, Wang A.-F, Tu S.-J, Jiang B. Chem. Commun. 2018; 54: 445
- 12a Luo HK, Khim LB, Schumann H, Lim C, Jie TX, Yang HY. Adv. Synth. Catal. 2007; 349: 1781
- 12b Jin Z. Nat. Prod. Rep. 2005; 22: 196
- 12c Huang M.-H, Zhu C.-F, He C.-L, Zhu Y.-L, Hao W.-J, Wang D.-C, Tu S.-J, Jiang B. Org. Chem. Front. 2018; 5: 1643
- 12d Huang M.-H, Zhu Y.-L, Hao W.-J, Wang A.-F, Wang D.-C, Liu F, Wei P, Tu S.-J, Jiang B. Adv. Synth. Catal. 2017; 359: 2229
- 12e Huang M.-H, Hong Y, Hu J.-Q, Yang S.-Z, Zhu Y.-L, Wang D.-C, Jiang B. Tetrahedron Lett. 2020; 61: 151507
- 13 Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
For selected recent examples, see:
For recent reviews, see:
For recent examples, see:
For selected examples, see: