Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(20): 1967-1975
DOI: 10.1055/s-0040-1707904
DOI: 10.1055/s-0040-1707904
account
Synthesis of Polycyclic Natural Products through Skeletal Rearrangement
This work was financially supported by JSPS KAKENHI (Grant Numbers JP17H01523) and by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research; BINDS) from the Japan Agency for Medical Research and Development (AMED) under Grant Number JP19am0101099.Further Information
Publication History
Received: 21 May 2020
Accepted after revision: 03 June 2020
Publication Date:
23 July 2020 (online)
Abstract
Construction of rings through reliable reactions followed by changes in the ring size or the connectivity through skeletal rearrangement provides molecules with a wide range of skeletons. In this account, our syntheses of polycyclic natural products through skeletal rearrangement are discussed.
1 Introduction
2 Synthesis through Changes in the Ring Size
3 Synthesis by Biomimetic Strategies
4 Synthesis through Metathesis
5 Synthesis through Temporary Formation of a Ring
6 Conclusion
-
References
- 1a Newman DJ, Cragg GM. J. Nat. Prod. 2016; 79: 629
- 1b Newman DJ, Cragg GM. J. Nat. Prod. 2020; 83: 770
- 1c Gerry CJ, Schreiber SL. Nat. Rev. Drug Discovery 2018; 17: 333
- 1d Davison EK, Brimble MA. Curr. Opin. Chem. Biol. 2019; 52: 1
- 2a Lachance H, Wetzel S, Kumar K, Waldmann H. J. Med. Chem. 2012; 55: 5989
- 2b Kaiser M, Wetzel S, Kumar K, Waldmann H. Cell. Mol. Life Sci. 2008; 65: 1186
- 3a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 3b Lovering F. MedChemComm 2013; 4: 515
- 4a Yokoshima S. Chem. Pharm. Bull. 2013; 61: 251
- 4b Yokoshima S. Yuki Gosei Kagaku Kyokaishi 2017; 75: 1035
- 5a Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 5b Takao K.-i, Munakata R, Tadano K.-i. Chem. Rev. 2005; 105: 4779
- 5c Foster RA. A, Willis MC. Chem. Soc. Rev. 2013; 42: 63
- 5d Jiang X, Wang R. Chem. Rev. 2013; 113: 5515
- 5e Xie M, Lin L, Feng X. Chem. Rec. 2017; 17: 1184
- 5f Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
- 6 You L, Liang X.-T, Xu L.-M, Wang Y.-F, Zhang J.-J, Su Q, Li Y.-H, Zhang B, Yang S.-L, Chen J.-H, Yang Z. J. Am. Chem. Soc. 2015; 137: 10120
- 7 Kobayashi J, Hirasawa Y, Yoshida N, Morita H. J. Org. Chem. 2001; 66: 5901
- 8a Nishimura T, Unni AK, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2011; 133: 418; corrigendum: J. Am. Chem. Soc. 2014, 136, 5818
- 8b Nishimura T, Unni AK, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2013; 135: 3243 ; corrigendum: J. Am. Chem. Soc. 2013, 136, 5817
- 9a Beshore DC, Smith AB. III. J. Am. Chem. Soc. 2007; 129: 4148
- 9b Bisai A, West SP, Sarpong R. J. Am. Chem. Soc. 2008; 130: 7222
- 9c Lee AS, Liau BB, Shair MD. J. Am. Chem. Soc. 2014; 136: 13442
- 9d Yang Y, Haskins CW, Zhang W, Low PL, Dai M. Angew. Chem. Int. Ed. 2014; 53: 3922
- 9e Yang Y, Dai M. Synlett 2014; 25: 2093
- 9f Zhang J, Yan Y, Hu R, Li T, Bai W.-J, Yang Y. Angew. Chem. Int. Ed. 2020; 59: 2860
- 10a Nilsson BL, Overman LE, Read De Alaniz J, Rohde JM. J. Am. Chem. Soc. 2008; 130: 11297
- 10b Altman RA, Nilsson BL, Overman LE, Read De Alaniz J, Rohde JM, Taupin V. J. Org. Chem. 2010; 75: 7519
- 11 Fujii M, Nishimura T, Koshiba T, Yokoshima S, Fukuyama T. Org. Lett. 2013; 15: 232 ; corrigendum: Org. Lett. 2014, 16, 1272
- 12 Tan C.-H, Ma X.-Q, Chen G.-F, Zhu D.-Y. Helv. Chim. Acta 2002; 85: 1058
- 13 Tanimura S, Yokoshima S, Fukuyama T. Org. Lett. 2017; 19: 3684
- 14a Nakayama A, Kogure N, Kitajima M, Takayama H. Angew. Chem. Int. Ed. 2011; 50: 8025
- 14b Hong B, Li H, Wu J, Zhang J, Lei X. Angew. Chem. Int. Ed. 2015; 54: 1011
- 14c Zeng C, Zhao J, Zhao G. Tetrahedron 2015; 71: 64
- 14d Hong B, Hu D, Wu J, Zhang J, Li H, Pan Y, Lei X. Chem. Asian J. 2017; 12: 1557
- 15 House HO, Wasson RL. J. Am. Chem. Soc. 1957; 79: 1488
- 16a Bulger PG, Bagal SK, Marquez R. Nat. Prod. Rep. 2008; 25: 254
- 16b Kim J, Movassaghi M. Chem. Soc. Rev. 2009; 38: 3035
- 16c Poupon E. Planta Med. 2012; 78: IL44
- 16d Jürjens G, Kirschning A, Candito DA. Nat. Prod. Rep. 2015; 32: 723
- 16e Takayama H. Chem. Pharm. Bull. 2020; 68: 103
- 17 Tan C.-H, Chen G.-F, Ma X.-Q, Jiang S.-H, Zhu D.-Y. J. Nat. Prod. 2002; 65: 1021
- 18 Kumazaki H, Nakajima R, Bessho Y, Yokoshima S, Fukuyama T. Synlett 2015; 26: 2131
- 19 Nomura T, Yokoshima S, Fukuyama T. Org. Lett. 2018; 20: 119
- 20 Donald JR, Unsworth WP. Chem. Eur. J. 2017; 23: 8780
- 21a Takayama H, Katakawa K, Kitajima M, Yamaguchi K, Aimi N. Tetrahedron Lett. 2002; 43: 8307
- 21b Nakayama A, Kogure N, Kitajima M, Takayama H. Org. Lett. 2009; 11: 5554
- 22 Churykau DH, Zinovich VG, Kulinkovich OG. Synlett 2004; 1949
- 23 González AG, De La Fuente G, Reina M, Zabel V, Watson WH. Tetrahedron Lett. 1980; 21: 1155
- 24a Wiesner K, Tsai TY. R, Huber K, Bolton SE, Vlahov R. J. Am. Chem. Soc. 1974; 96: 4990
- 24b Wiesner K. Tetrahedron 1985; 41: 485
- 24c Marth CJ, Gallego GM, Lee JC, Lebold TP, Kulyk S, Kou KG. M, Qin J, Lilien R, Sarpong R. Nature 2015; 528: 493
- 24d Kou KG. M, Kulyk S, Marth CJ, Lee JC, Doering NA, Li BX, Gallego GM, Lebold TP, Sarpong R. J. Am. Chem. Soc. 2017; 139: 13882
- 24e Kamakura D, Todoroki H, Urabe D, Hagiwara K, Inoue M. Angew. Chem. Int. Ed. 2020; 59: 479
- 25 Gin and co-workers accomplished a synthesis of an aconitine-type norditerpenoid alkaloid, neofinaconitine, without using the Wagner–Meerwein rearrangement; see: Shi Y, Wilmot JT, Nordstrøm LU, Tan DS, Gin DY. J. Am. Chem. Soc. 2013; 135: 14313
- 26a Nishiyama Y, Yokoshima S, Fukuyama T. Org. Lett. 2016; 18: 2359
- 26b Nishiyama Y, Yokoshima S, Fukuyama T. Org. Lett. 2017; 19: 5833
- 27 Nishiyama Y, Han-Ya Y, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2014; 136: 6598
- 28a Liao C.-C, Peddinti RK. Acc. Chem. Res. 2002; 35: 856
- 28b Magdziak D, Meek SJ, Pettus TR. R. Chem. Rev. 2004; 104: 1383
- 28c Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
- 28d Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
- 28e Liu X.-Y, Qin Y. Nat. Prod. Rep. 2017; 34: 1044
- 29a Kotha S, Meshram M, Khedkar P, Banerjee S, Deodhar D. Beilstein J. Org. Chem. 2015; 11: 1833
- 29b Han J.-C, Li C.-C. Chem. Rec. 2017; 17: 499
- 29c Lecourt C, Dhambri S, Allievi L, Sanogo Y, Zeghbib N, Ben Othman R, Lannou MI, Sorin G, Ardisson J. Nat. Prod. Rep. 2018; 35: 105
- 29d Kotha S, Meshram M, Dommaraju Y. Chem. Rec. 2018; 18: 1613
- 29e Cheng-Sánchez I, Sarabia F. Synthesis 2018; 50: 3749
- 30a Miura Y, Hayashi N, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2012; 134: 11995
- 30b Hayashi N, Miura Y, Yokoshima S, Fukuyama T. Chem. Pharm. Bull. 2019; 67: 64
- 31a Hubbs JL, Heathcock CH. Org. Lett. 1999; 1: 1315
- 31b Wang X, Xia D, Tan L, Chen H, Huang H, Song H, Qin Y. Chem. Eur. J. 2015; 21: 14602
- 31c Takada A, Fujiwara H, Sugimoto K, Ueda H, Tokuyama H. Chem. Eur. J. 2015; 21: 16400
- 31d Xu Z, Bao X, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 14937
- 32a Renner U. Lloydia 1964; 27: 406
- 32b Hájíček J, Taimr J, Buděšínský M. Tetrahedron Lett. 1998; 39: 505
- 33 Kleinfelter DC, Gerteisen TJ. J. Org. Chem. 1971; 36: 3255
- 34 Stewart IC, Ung T, Pletnev AA, Berlin JM, Grubbs RH, Schrodi Y. Org. Lett. 2007; 9: 1589
- 35 Itooka R, Iguchi Y, Miyaura N. J. Org. Chem. 2003; 68: 6000
- 36 Murakami K, Toma T, Fukuyama T, Yokoshima S. Angew. Chem. Int. Ed. 2020; 59: 6253
For selected reviews on Diels–Alder reaction, see:
For other syntheses of lyconadin A, see:
For other syntheses of huperzine Q, see:
For selected reviews on biomimetic synthesis of natural products, see:
For reviews on the oxidative dearomatization/Diels–Alder reaction sequence, see:
For selected reviews on ring-closing metathesis, see:
For other syntheses of isoschizogamine, see: