Subscribe to RSS
DOI: 10.1055/s-0040-1707961
Variability of Rhodium(III)-Catalyzed Reactions of Aromatic Oximes with Alkenes
The main synthetic work was supported by the Russian Science Foundation (Grant no. 17-73-20144). The characterization of the compounds was carried out by using equipment at the Center for Molecular Composition Studies of INEOS RAS, with financial support from the Ministry of Science and Higher Education.Publication History
Received: 01 March 2020
Accepted after revision: 03 April 2020
Publication Date:
24 April 2020 (online)
This work is dedicated to the memory of Prof. Keith Fagnou, who made a seminal contribution to rhodium(III)-catalyzed C−H functionalization reactions, and sadly passed away ten years ago at the age of 38.
Abstract
Acetophenone oxime reacts with various alkenes in the presence of the rhodium catalyst [Cp*RhCl2]2 (2.5 mol%; Cp* = pentamethylcyclopentadienyl) and 1,1,1,3,3,3-hexafluoropropan-2-ol as an important cosolvent. Styrene, aliphatic terminal alkenes, and strained cyclic alkenes gave the corresponding substituted dihydroisoquinolines in yields of 50–99%. On the other hand, alkenes containing functional groups close to the double bond gave a variety of different products. The reactions of acetophenone oxime with styrene or dec-1-ene in the presence of the chiral catalyst [(C5H2 t Bu2CH2 t Bu)RhI2]2 provided the corresponding dihydroisoquinolines with improved regioselectivity but a low enantiomeric ratio (61:39 in both cases).
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707961.
- Supporting Information
-
References and Notes
- 1 Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
- 2 Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
- 3 Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 4 Zhang X, Chen D, Zhao M, Zhao J, Jia A, Li X. Adv. Synth. Catal. 2011; 353: 719
- 5 Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
- 6 Feng R, Ning H, Su H, Gao Y, Yin H, Wang Y, Yang Z, Qi C. J. Org. Chem. 2017; 82: 10408
- 7 Hyster TK, Rovis T. Chem. Commun. 2011; 47: 11846
- 8 Wang H, Koeller J, Liu W, Ackermann L. Chem. Eur. J. 2015; 21: 15525
- 9 Sen M, Kalsi D, Sundararaju B. Chem. Eur. J. 2015; 21: 15529
- 10 Sun B, Yoshino T, Kanai M, Matsunaga S. Angew. Chem. Int. Ed. 2015; 54: 12968
- 11 Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
- 12 Tsai AS, Brasse M, Bergman RG, Ellman JA. Org. Lett. 2011; 13: 540
- 13 Zhang Z, Tang M, Han S, Ackermann L, Li J. J. Org. Chem. 2017; 82: 664
- 14 Wang SG, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 2514
- 15 Zhao D, Lied F, Glorius F. Chem. Sci. 2014; 5: 2869
- 16 Webb NJ, Raw SA, Marsden SP. Tetrahedron 2018; 74: 5200
- 17 Chu H, Sun S, Yu J.-T, Cheng J. Chem. Commun. 2015; 51: 13327
- 18 Chen R, Qi J, Mao Z, Cui S. Org. Biomol. Chem. 2016; 14: 6201
- 19 Yang X, Liu S, Yu S, Kong L, Lan Y, Li X. Org. Lett. 2018; 20: 2698
- 20 Vijayan A, Jumaila CU, Radhakrishnan KV. Asian J. Org. Chem. 2017; 6: 1561
- 21 Neely JM, Rovis T. J. Am. Chem. Soc. 2013; 135: 66
- 22 Neely JM, Rovis T. J. Am. Chem. Soc. 2014; 136: 2735
- 23 Romanov-Michailidis F, Sedillo KF, Neely JM, Rovis T. J. Am. Chem. Soc. 2015; 137: 8892
- 24 Zhang X, Ouyang X.-H, Li Y, Chen B, Li J.-H. Adv. Synth. Catal. 2019; 361: 4955
- 25 Sanjosé-Orduna J, Sarria Toro JM, Pérez-Temprano MH. Angew. Chem. Int. Ed. 2018; 57: 11369
- 26 1-Methyl-3-phenyl-3,4-dihydroisoquinoline (2a); Typical Procedure Acetophenone oxime (1; 27.0 mg, 0.20 mmol), [Cp*RhCl2]2 (3.1 mg, 0.005 mmol), K2CO3 (28 mg, 0.20 mmol), and styrene (0.092 ml, 0.8 mmol) were mixed in dry MeCN (0.5 mL). HFIP (0.05 mL) was added, and argon was bubbled through the solvent for 2 min. The vial was then sealed and the mixture was stirred for 3 d at 20 °C. The vial was then opened to air and the mixture was evaporated in vacuum. The residue was purified by column chromatography [silica gel; hexanes–EtOAc (10:1 to 1:1 gradient)] to give a colorless oil; yield: 36 mg (82%). 1H NMR (400 MHz, CDCl3): δ = 7.57 (d, J = 7.4 Hz, 1 H, CHAr), 7.46 (d, J = 7.4 Hz, 2 H, CHAr), 7.40–7.35 (m, 4 H, CHAr), 7.29 (t, J = 7.2 Hz, 1 H, CHAr), 7.20 (d, J = 7.2 Hz, 1 H, CHAr), 4.60–4.50 (m, 1 H, CH), 2.96 (dd, J = 15.8, 5.5 Hz, 1 H, CH2), 2.90–2.81 (m, 1 H, CH2), 2.51 (d, J = 2.0 Hz, 3 H, CH3). 13C NMR (101 MHz, CDCl3): δ = 164.61, 144.50, 136.98, 130.95, 129.54, 128.58, 127.57, 127.26, 127.18, 127.00, 125.54, 61.01, 34.77, 23.47. HRMS (ESI): m/z [M + H]+ calcd for C16H16N = 222.1277; found: 222.1279.
- 27 Wodrich MD, Ye B, Gonthier JF, Corminboeuf C, Cramer N. Chem. Eur. J. 2014; 20: 15409
- 28 Hyster TK, Dalton DM, Rovis T. Chem. Sci. 2015; 6: 254
- 29 Trifonova EA, Ankudinov NM, Kozlov MV, Sharipov MY, Nelyubina YV, Perekalin DS. Chem. Eur. J. 2018; 24: 16570
- 30 Zhang Y, Wu Q, Cui S. Chem. Sci. 2014; 5: 297
- 31 Santhini PV, Gopalan G, Smrithy AS, Radhakrishnan KV. Synlett 2018; 29: 2023
- 32 Wang H.-J, Guo L, Zhu C.-F, Luo Y.-F, Li Y.-G, Wu X. Eur. J. Org. Chem. 2018; 5456
- 33 Narayan R, Bauer JO, Strohmann C, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2013; 52: 12892
- 34 Wang H, Schröder N, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 5386
- 35 Manikandan R, Madasamy P, Jeganmohan M. Chem. Eur. J. 2015; 21: 13934
- 36 Mishra NK, Sharma S, Park J, Han S, Kim IS. ACS Catal. 2017; 7: 2821
- 37 Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
- 38a Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 38b Jia Z, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
- 38c Trifonova E. A., Perekalin D. S.; INEOS Open; 2019, 2: 124; available at http://ineosopen.org/f/io1917r.pdf (accessed Apr 16, 2020).
For overviews of Rh catalysts with chiral cyclopentadienyl ligands see: