Synlett 2020; 31(11): 1117-1120
DOI: 10.1055/s-0040-1707961
letter
© Georg Thieme Verlag Stuttgart · New York

Variability of Rhodium(III)-Catalyzed Reactions of Aromatic Oximes with Alkenes

Evgeniya A. Trifonova
a   Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow, 119991, Russian Federation
,
Alina A. Komarova
a   Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow, 119991, Russian Federation
,
Denis Chusov
a   Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow, 119991, Russian Federation
b   Plekhanov Russian University of Economics, 36 Stremyannyi pereulok, Moscow, 117997, Russian Federation   Email: dsp@ineos.ac.ru
,
a   Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow, 119991, Russian Federation
b   Plekhanov Russian University of Economics, 36 Stremyannyi pereulok, Moscow, 117997, Russian Federation   Email: dsp@ineos.ac.ru
› Author Affiliations
The main synthetic work was supported by the Russian Science Foundation (Grant no. 17-73-20144). The characterization of the compounds was carried out by using equipment at the Center for Molecular Composition Studies of INEOS RAS, with financial support from the Ministry of Science and Higher Education.
Further Information

Publication History

Received: 01 March 2020

Accepted after revision: 03 April 2020

Publication Date:
24 April 2020 (online)


This work is dedicated to the memory of Prof. Keith Fagnou, who made a seminal contribution to rhodium(III)-catalyzed C−H functionalization reactions, and sadly passed away ten years ago at the age of 38.

Abstract

Acetophenone oxime reacts with various alkenes in the presence of the rhodium catalyst [Cp*RhCl2]2 (2.5 mol%; Cp* = pentamethylcyclopentadienyl) and 1,1,1,3,3,3-hexafluoropropan-2-ol as an important cosolvent. Styrene, aliphatic terminal alkenes, and strained cyclic alkenes gave the corresponding substituted dihydroisoquinolines in yields of 50–99%. On the other hand, alkenes containing functional groups close to the double bond gave a variety of different products. The reactions of acetophenone oxime with styrene or dec-1-ene in the presence of the chiral catalyst [(C5H2 t Bu2CH2 t Bu)RhI2]2 provided the corresponding dihydroisoquinolines with improved regioselectivity but a low enantiomeric ratio (61:39 in both cases).

Supporting Information