Synthesis 2020; 52(10): 1512-1522
DOI: 10.1055/s-0040-1707969
paper
© Georg Thieme Verlag Stuttgart · New York

Reaction of Bromoenones with Amidines: A Simple Catalyst-Free Approach to Trifluoromethylated Pyrimidines

Alexey R. Romanov
,
Alexander Yu. Rulev
A. E. Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1, Favorsky St., Irkutsk 664033, Russia   Email: rulev@irioch.irk.ru   Email: rulev-irk@yandex.ru
,
Alexander V. Popov
,
Evgeniy V. Kondrashov
,
Sergey V. Zinchenko
› Author Affiliations
The reported study was funded by the Russian Foundation for Basic Research (RFBR, project number 19-03-00206).
Further Information

Publication History

Received: 24 January 2020

Accepted after revision: 12 February 2020

Publication Date:
09 March 2020 (online)


Abstract

A facile one-pot synthesis of trifluoromethylated pyrimidines has been achieved by the treatment of fluorinated 2-bromoenones with aryl- and alkylamidines. The assembly of pyrimidine core proceeds by the cascade reactions via aza-Michael addition–intramolecular cyclization–dehydrohalogenation/dehydration sequence. This strategy is featured by high selectivity and mild reaction conditions giving the target heterocycles in high yields (up to 99%). The unique influence of trifluoromethyl group on the reaction path is demonstrated.

Supporting Information

 
  • References

  • 1 Ojima I. Front. Chem. 2017; 5: 52
    • 2a Rulev AR, Romanov AR. RSC Adv. 2016; 6: 1984
    • 2b Meyer F. Chem. Commun. 2016; 52: 3077
    • 2c Fluorine in Heterocyclic Chemistry, Vol. 1. Nenajdenko VG. Springer; Berlin: 2014: 681
    • 2d Fluorine in Heterocyclic Chemistry, Vol. 2. Nenajdenko VG. Springer; Berlin: 2014: 760
    • 2e Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications. Petrov VA. Wiley; New Jersey: 2009: 515
    • 2f Fluorinated Heterocycles . Gakh AA, Kirk KL. ACS Symposium Series 1003, Oxford University Press/American Chemical Society; Washington, DC: 2009: 360
  • 3 Leroux FR, Manteau B, Vors J-P, Pazenok S. Beilstein J. Org. Chem. 2008; 4: 13
    • 4a Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 4b Togni A. Adv. Synth. Catal. 2010; 352: 2689
    • 4c Bégué J.-P, Bonnet-Delpon D, Crousse B, Legros J. Chem. Soc. Rev. 2005; 34: 562

      For selected recent reviews, see:
    • 5a Fischer G. Adv. Heterocycl. Chem. 2019; 128: 1
    • 5b Meguru R, Garimella S, Balla D, Sambaru K. Int. J. PharmTech. Res. 2015; 8: 88
    • 5c Yerragunta V, Patil P, Anusha V, Kumara Swamy T, Suman D, Samhitha T. PharmaTutor 2013; 1: 39
  • 6 Bégué J.-P, Bonnet-Delpon D. In Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008
  • 7 Wigle TJ, Tsvetkova EV, Welch SA, Kim RB. Pharmaceutics 2019; 11: 199
    • 8a For a review on the strategies for the pyrimidine synthesis, see: Hill MD, Mavossaghi M. Chem. Eur. J. 2008; 14: 6836 ; and references therein

    • For selected recent papers, see:
    • 8b Guo W, Li C, Liao J, Ji F, Liu D, Wu W, Jiang H. J. Org. Chem. 2016; 81: 5538
    • 8c Su L, Sun K, Liu L, Sun M, Dong J, Zhou Y, Yin S-F. Org. Lett. 2018; 20: 3399
    • 8d Zhan J-L, Wu M-W, Chen F, Han B. J. Org. Chem. 2016; 81: 11994
    • 8e Sasada T, Kobayashi F, Sakai N, Konakahara T. Org. Lett. 2009; 11: 2161
    • 8f Jadhav SD, Singh A. Org. Lett. 2017; 19: 5673
  • 9 Chorlton AP. In Ullmann's Encyclopedia of Industrial Chemistry. 2000. DOI:10.1002/14356007.a22_431
  • 10 Kotljarov A, Irgashev RA, Iaroshenko VO, Sevenard DV, Sosnovskikh VYa. Synthesis 2009; 3233
  • 11 Dalinger IL, Vatsadse IA, Shevelev SA, Ivachtchenko AV. J. Comb. Chem. 2005; 7: 236
  • 12 Bonacorso HG, Bortolotto GP, Navarini J, Porte LM. F, Wiethan CW, Zanatta N, Martins MA. P, Flores AF. C. J. Fluorine Chem. 2010; 131: 1297
  • 13 Funabiki K, Nakamura H, Matsui M, Shibata K. Synlett 1999; 756
  • 14 Kawase M, Hirabayashi M, Saito S, Yamamoto K. Tetrahedron Lett. 1999; 40: 2541
  • 15 Saijo R, Watanabe G, Kurihara K, Kawase M. Heterocycles 2014; 89: 2334
  • 16 Romanov AR, Rulev AYu, Ushakov IA, Muzalevskiy VM, Nenajdenko VG. Eur. J. Org. Chem. 2017; 4121
    • 17a Rulev AYu, Muzalevskiy VM, Kondrashov EV, Ushakov IA, Romanov AR, Khrustalev VN, Nenajdenko VG. Org. Lett. 2013; 15: 2726
    • 17b Muzalevskiy VM, Ustynyuk YuA, Gloriosov IP, Chertkov VA, Rulev AYu, Kondrashov EV, Ushakov IA, Romanov AR, Nenajdenko VG. Chem. Eur. J. 2015; 21: 16982
    • 17c Gloriozov IP, Muzalevskiy VM, Rulev AYu, Kondrashov EV, Nenajdenko VG, Ustynyuk YuA. Russ. J. Org. Chem. 2016; 52: 1098
    • 18a Muzalevskiy VM, Rulev AYu, Kondrashov EV, Romanov AR, Ushakov IA, Chertkov VA, Nenajdenko VG. Eur. J. Org. Chem. 2016; 1612
    • 18b Rulev AYu, Romanov AR, Kondrashov EV, Ushakov IA, Vashchenko AV, Muzalevskiy VM, Nenajdenko VG. J. Org. Chem. 2016; 81: 10029
  • 19 Rulev AYu, Romanov AR, Kondrashov EV, Ushakov IA, Muzalevskiy VM, Nenajdenko VG. Eur. J. Org. Chem. 2018; 4202
  • 20 Rulev AYu, Romanov AR, Kondrashov EV, Ushakov IA, Muzalevskiy VM, Nenajdenko VG. J. Fluorine Chem. 2019; 227: 109366
  • 21 Rulev AYu. Eur. J. Org. Chem. 2018; 3609
    • 22a Rulev AYu, Ushakov IA, Nenajdenko VG, Balenkova ES, Voronkov MG. Eur. J. Org. Chem. 2007; 6039
    • 22b Rulev AYu, Ushakov IA, Nenajdenko VG. Tetrahedron 2008; 64: 8073
    • 23a Lipinski CA, Blizniak TE, Craig RH. J. Org. Chem. 1984; 49: 566
    • 23b Reiter LA. J. Org. Chem. 1984; 49: 3494
  • 24 Guchhait SK, Hura N, Shah AP. J. Org. Chem. 2017; 82: 2745
  • 25 Zhu Y, Li C, Zhang J, She M, Sun W, Wan K, Wang Y, Yin B, Liu P, Li J. Org. Lett. 2015; 17: 3872
  • 27 Rulev AYu. Russ. Chem. Rev. 2011; 80: 197
    • 28a Jung K.-Y, Kim S.-K, Gao Z.-G, Gross AS, Melman N, Jacobson KA, Kin Y.-C. Bioorg. Med. Chem. 2004; 12: 613
    • 28b Lu X, Xin X, Wan B. Tetrahedron Lett. 2018; 59: 361
    • 29a Morel B, Franck P, Bidange J, Sergeyev S, Smith DA, Moseley JD, Maes BU. W. ChemSusChem 2017; 10: 624
    • 29b Kolb HC, Kanamarlapudi RC, Richardson PF, Khan G. (Lexicon Pharmaceuticals, Inc.) US 6806380 B2, 2002
  • 30 Zhang P.-F, Chen Z.-C. Synthesis 2001; 2075