Semin Musculoskelet Radiol 2020; 24(04): 355-366
DOI: 10.1055/s-0040-1708822
Review Article

Advanced Magnetic Resonance Imaging in Osteoarthritis

1   Department of Radiology and Imaging (MRI), MRI Laboratory, Hospital for Special Surgery, New York
,
Shari T. Jawetz
2   Department of Radiology and Imaging, Hospital for Special Surgery, New York
› Author Affiliations

Abstract

Osteoarthritis (OA) is one of the most common causes of disability throughout the world. Current therapeutic strategies are aimed at preventing the development and delaying the progression of OA, as well as repairing or replacing worn articular surfaces, because the regeneration of lost hyaline articular cartilage is not currently a clinically feasible option. Imaging is useful in formulating treatment strategies in patients at risk for OA, allowing assessment of risk factors, the degree of preexisting tissue damage, and posttreatment monitoring. Magnetic resonance imaging (MRI), in particular, provides in-depth evaluation of these patients, with optimal clinical sequencing allowing sensitive assessment of chondral signal and morphology, and the addition of advanced MRI techniques facilitating comprehensive evaluation of joint health, with increased sensitivity for changes in articular cartilage and surrounding joint tissues.



Publication History

Article published online:
29 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics 1999; 19 (02) 373-382
  • 2 Argentieri EC, Burge AJ, Potter HG. Magnetic resonance imaging of articular cartilage within the knee. J Knee Surg 2018; 31 (02) 155-165
  • 3 Ariyachaipanich A, Bae WC, Statum S, Chung CB. Update on MRI pulse sequences for the knee: imaging of cartilage, meniscus, tendon, and hardware. Semin Musculoskelet Radiol 2017; 21 (02) 45-62
  • 4 Eagle S, Potter HG, Koff MF. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J Orthop Res 2017; 35 (03) 412-423
  • 5 Carballido-Gamio J, Link TM, Li X. , et al. Feasibility and reproducibility of relaxometry, morphometric, and geometrical measurements of the hip joint with magnetic resonance imaging at 3T. J Magn Reson Imaging 2008; 28 (01) 227-235
  • 6 Keenan KE, Besier TF, Pauly JM. , et al. Prediction of glycosaminoglycan content in human cartilage by age, T1ρ and T2 MRI. Osteoarthritis Cartilage 2011; 19 (02) 171-179
  • 7 Gold SL, Burge AJ, Potter HG. MRI of hip cartilage: joint morphology, structure, and composition. Clin Orthop Relat Res 2012; 470 (12) 3321-3331
  • 8 Jazrawi LM, Alaia MJ, Chang G, Fitzgerald EF, Recht MP. Advances in magnetic resonance imaging of articular cartilage. J Am Acad Orthop Surg 2011; 19 (07) 420-429
  • 9 Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 1997; 205 (02) 551-558
  • 10 Bangerter NK, Tarbox GJ, Taylor MD, Kaggie JD. Quantitative sodium magnetic resonance imaging of cartilage, muscle, and tendon. Quant Imaging Med Surg 2016; 6 (06) 699-714
  • 11 Dou W, Lin CE, Ding H. , et al. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies. Quant Imaging Med Surg 2019; 9 (10) 1747-1766
  • 12 Koller U, Apprich S, Schmitt B, Windhager R, Trattnig S. Evaluating the cartilage adjacent to the site of repair surgery with glycosaminoglycan-specific magnetic resonance imaging. Int Orthop 2017; 41 (05) 969-974
  • 13 Li Q, Amano K, Link TM, Ma CB. Advanced imaging in osteoarthritis. Sports Health 2016; 8 (05) 418-428
  • 14 Singh A, Haris M, Cai K. , et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med 2012; 68 (02) 588-594
  • 15 Lansdown DA, Ma CB. Clinical utility of advanced imaging of the knee. J Orthop Res 2019
  • 16 Koff MF, Potter HG. Noncontrast MR techniques and imaging of cartilage. Radiol Clin North Am 2009; 47 (03) 495-504
  • 17 Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson Imaging 2007; 25 (02) 279-289
  • 18 Argentieri EC, Koff MF, Breighner RE, Endo Y, Shah PH, Sneag DB. Diagnostic accuracy of zero-echo time MRI for the evaluation of cervical neural foraminal stenosis. Spine 2018; 43 (13) 928-933
  • 19 Breighner RE, Bogner EA, Lee SC, Koff MF, Potter HG. Evaluation of osseous morphology of the hip using zero echo time magnetic resonance imaging. Am J Sports Med 2019; 47 (14) 3460-3468
  • 20 Breighner RE, Endo Y, Konin GP, Gulotta LV, Koff MF, Potter HG. Technical developments: zero echo time imaging of the shoulder: enhanced osseous detail by using MR imaging. Radiology 2018; 286 (03) 960-966
  • 21 Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197 (03) 547-555
  • 22 Hayter CL, Koff MF, Shah P, Koch KM, Miller TT, Potter HG. MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques. AJR Am J Roentgenol 2011; 197 (03) W405-11
  • 23 Koch KM, Brau AC, Chen W. , et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med 2011; 65 (01) 71-82
  • 24 Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF. Magnetic resonance imaging near metal implants. J Magn Reson Imaging 2010; 32 (04) 773-787
  • 25 Zochowski KC, Miranda MA, Cheung J. , et al. MRI of hip arthroplasties: comparison of isotropic multiacquisition variable-resonance image combination selective (MAVRIC SL) acquisitions with a conventional MAVRIC SL acquisition. AJR Am J Roentgenol 2019; 213 (06) W277-W286
  • 26 Oei EHG, Wick MC, Müller-Lutz A, Schleich C, Miese FR. Cartilage imaging: techniques and developments. Semin Musculoskelet Radiol 2018; 22 (02) 245-260
  • 27 Potter H. Articular Cartilage. In: Stoller D. , ed. Magnetic Resonance Imaging in Orthopaedics and Sports Medicine. Vol 1, 3th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2007: 1099-1130
  • 28 Jungius KP, Schmid MR, Zanetti M, Hodler J, Koch P, Pfirrmann CW. Cartilaginous defects of the femorotibial joint: accuracy of coronal short inversion time inversion-recovery MR sequence. Radiology 2006; 240 (02) 482-488
  • 29 Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 2009; 250 (03) 839-848
  • 30 Peterfy CG, Guermazi A, Zaim S. , et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12 (03) 177-190
  • 31 Chang EY, Ma Y, Du J. MR parametric mapping as a biomarker of early joint degeneration. Sports Health 2016; 8 (05) 405-411
  • 32 Burge AJ. CORR Insights®: T1ρ hip cartilage mapping in assessing patients with cam morphology: how can we optimize the regions of interest?. Clin Orthop Relat Res 2017; 475 (04) 1076-1079
  • 33 Pedoia V, Gallo MC, Souza RB, Majumdar S. Longitudinal study using voxel-based relaxometry: association between cartilage T and T2 and patient reported outcome changes in hip osteoarthritis. J Magn Reson Imaging 2017; 45 (05) 1523-1533
  • 34 Souza RB, Stehling C, Wyman BT. , et al. The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage. Osteoarthritis Cartilage 2010; 18 (12) 1557-1563
  • 35 Boutsikou K, Kostopoulos S, Glotsos D. , et al. Texture analysis of articular cartilage traumatic changes in the knee calculated from morphological 3.0T MR imaging. Eur J Radiol 2013; 82 (08) 1266-1272
  • 36 Carballido-Gamio J, Stahl R, Blumenkrantz G, Romero A, Majumdar S, Link TM. Spatial analysis of magnetic resonance T1rho and T2 relaxation times improves classification between subjects with and without osteoarthritis. Med Phys 2009; 36 (09) 4059-4067
  • 37 Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 2005; 87 (07) 1012-1018
  • 38 Blankenbaker DG, Tuite MJ. MR imaging of early hip joint degeneration. Magn Reson Imaging Clin N Am 2011; 19 (02) 365-378
  • 39 Stelzeneder D, Mamisch TC, Kress I. , et al. Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities. Osteoarthritis Cartilage 2012; 20 (07) 661-669
  • 40 Abboud JA, Bateman DK, Barlow J. Glenoid dysplasia. J Am Acad Orthop Surg 2016; 24 (05) 327-336
  • 41 Eichinger JK, Galvin JW, Grassbaugh JA, Parada SA, Li X. Glenoid dysplasia: pathophysiology, diagnosis, and management. J Bone Joint Surg Am 2016; 98 (11) 958-968
  • 42 Vezeridis PS, Ishmael CR, Jones KJ, Petrigliano FA. Glenohumeral dislocation arthropathy: etiology, diagnosis, and management. J Am Acad Orthop Surg 2019; 27 (07) 227-235
  • 43 Haj-Mirzaian A, Thawait GK, Tanaka MJ, Demehri S. Diagnosis and characterization of patellofemoral instability: review of available imaging modalities. Sports Med Arthrosc Rev 2017; 25 (02) 64-71
  • 44 Zaffagnini S, Grassi A, Zocco G, Rosa MA, Signorelli C, Muccioli GMM. The patellofemoral joint: from dysplasia to dislocation. EFORT Open Rev 2017; 2 (05) 204-214
  • 45 Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train 2014; 49 (06) 806-819
  • 46 Maffulli N, Binfield PM, King JB. Articular cartilage lesions in the symptomatic anterior cruciate ligament-deficient knee. Arthroscopy 2003; 19 (07) 685-690
  • 47 Svoboda SJ. ACL injury and posttraumatic osteoarthritis. Clin Sports Med 2014; 33 (04) 633-640
  • 48 Chang EY, Pallante-Kichura AL, Bae WC. , et al. Development of a Comprehensive Osteochondral Allograft MRI Scoring System (OCAMRISS) with histopathologic, micro-computed tomography, and biomechanical validation. Cartilage 2014; 5 (01) 16-27
  • 49 Marlovits S, Striessnig G, Resinger CT. , et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 2004; 52 (03) 310-319
  • 50 Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res 2004; (422) 214-223
  • 51 Guermazi A, Roemer FW, Alizai H. , et al. State of the art: MR imaging after knee cartilage repair surgery. Radiology 2015; 277 (01) 23-43
  • 52 Hayashi D, Li X, Murakami AM, Roemer FW, Trattnig S, Guermazi A. Understanding magnetic resonance imaging of knee cartilage repair: a focus on clinical relevance. Cartilage 2018; 9 (03) 223-236
  • 53 Andrade R, Vasta S, Pereira R. , et al. Knee donor-site morbidity after mosaicplasty—a systematic review. J Exp Orthop 2016; 3 (01) 31
  • 54 Bedi A, Feeley BT, Williams III RJ. Management of articular cartilage defects of the knee. J Bone Joint Surg Am 2010; 92 (04) 994-1009
  • 55 Jeuken RM, Roth AK, Peters RJRW. , et al. Polymers in cartilage defect repair of the knee: current status and future prospects. Polymers (Basel) 2016; 8 (06) E219
  • 56 Koff MF, Burge AJ, Koch KM, Potter HG. Imaging near orthopedic hardware. J Magn Reson Imaging 2017; 46 (01) 24-39