Semin Musculoskelet Radiol 2020; 24(04): 337-354
DOI: 10.1055/s-0040-1708823
Review Article

Quantitative Imaging in Inflammatory Arthritis: Between Tradition and Innovation

1   Department of Medicine, DIMED, Radiology Institute, University of Padova, Padova, Italy
,
Franz Kainberger
2   Division of Neuro- and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
,
Mikael Boesen
3   Department of Radiology, Copenhagen University Hospital Bispebjerg-Frederiksberg, Frederiksberg, Denmark
,
Siegfried Trattnig
4   Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Centre, Medical University of Vienna, Vienna, Austria
› Author Affiliations

Abstract

Radiologic imaging is crucial for diagnosing and monitoring rheumatic inflammatory diseases. Particularly the emerging approach of precision medicine has increased the interest in quantitative imaging. Extensive research has shown that ultrasound allows a quantification of direct signs such as bone erosions and synovial thickness. Dual-energy X-ray absorptiometry and high-resolution peripheral quantitative computed tomography (CT) contribute to the quantitative assessment of secondary signs such as osteoporosis or lean mass loss. Magnetic resonance imaging (MRI), using different techniques and sequences, permits in-depth evaluations. For instance, the perfusion of the inflamed synovium can be quantified by dynamic contrast-enhanced imaging or diffusion-weighted imaging, and cartilage injury can be assessed by mapping (T1ρ, T2). Furthermore, the increased metabolic activity characterizing the inflammatory response can be reliably assessed by hybrid imaging (positron emission tomography [PET]/CT, PET/MRI). Finally, advances in intelligent systems are pushing forward quantitative imaging. Complex mathematical algorithms of lesions' segmentation and advanced pattern recognition are showing promising results.



Publication History

Article published online:
29 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Resnick D. Bone and Joint Imaging, 3rd ed. Philadelphia, PA: Saunders; 2004
  • 2 Cross M, Smith E, Hoy D. , et al. The global burden of rheumatoid arthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 2014; 73 (07) 1316-1322
  • 3 Terslev L, Torp-Pedersen S, Savnik A. , et al. Doppler ultrasound and magnetic resonance imaging of synovial inflammation of the hand in rheumatoid arthritis: a comparative study. Arthritis Rheum 2003; 48 (09) 2434-2441
  • 4 Adami G, Saag KG. Osteoporosis pathophysiology, epidemiology, and screening in rheumatoid arthritis. Curr Rheumatol Rep 2019; 21 (07) 34
  • 5 Baillet A, Gossec L, Carmona L. , et al. Points to consider for reporting, screening for and preventing selected comorbidities in chronic inflammatory rheumatic diseases in daily practice: a EULAR initiative. Ann Rheum Dis 2016; 75 (06) 965-973
  • 6 Gaspersic N, Sersa I, Jevtic V, Tomsic M, Praprotnik S. Monitoring ankylosing spondylitis therapy by dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Skeletal Radiol 2008; 37 (02) 123-131
  • 7 Axelsen MB, Boesen M, Bliddal H, Jacobsson L, Hansen MS, Østergaard M. Responsiveness of different dynamic contrast-enhanced magnetic resonance imaging approaches: a post-hoc analysis of a randomized controlled trial of certolizumab pegol in rheumatoid arthritis. Scand J Rheumatol 2019; 16: 1-7
  • 8 Hilbert F, Holl-Wieden A, Sauer A, Köstler H, Neubauer H. Intravoxel incoherent motion magnetic resonance imaging of the knee joint in children with juvenile idiopathic arthritis. Pediatr Radiol 2017; 47 (06) 681-690
  • 9 Regatte RR, Akella SV, Wheaton AJ. , et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol 2004; 11 (07) 741-749
  • 10 Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. J Immunol 2010; 184 (08) 4062-4068
  • 11 Kumar NS, Shejul Y, Asopa R, Basu S. Quantitative metabolic volumetric product on 18fluorine-2fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in assessing treatment response to disease-modifying antirheumatic drugs in rheumatoid arthritis: multiparametric analysis Integrating American College of Rheumatology/European League Against Rheumatism Criteria. World J Nucl Med 2017; 16 (04) 293-302
  • 12 Buchbender C, Ostendorf B, Ruhlmann V. , et al. Hybrid 18F-labeled fluoride positron emission tomography/magnetic resonance (MR) imaging of the sacroiliac joints and the spine in patients with axial spondyloarthritis: a pilot study exploring the link of MR bone pathologies and increased osteoblastic activity. J Rheumatol 2015; 42 (09) 1631-1637
  • 13 Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: current status and future directions. AJR Am J Roentgenol 2019; 213 (03) 506-513
  • 14 Backhaus M, Burmester GR, Gerber T. , et al; Working Group for Musculoskeletal Ultrasound in the EULAR Standing Committee on International Clinical Studies including Therapeutic Trials. Guidelines for musculoskeletal ultrasound in rheumatology. Ann Rheum Dis 2001; 60 (07) 641-649
  • 15 Cooperberg PL, Tsang I, Truelove L, Knickerbocker WJ. Gray scale ultrasound in the evaluation of rheumatoid arthritis of the knee. Radiology 1978; 126 (03) 759-763
  • 16 D'Agostino MA, Terslev L, Aegerter P. , et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce—Part 1: definition and development of a standardised, consensus-based scoring system. RMD Open 2017; 3 (01) e000428
  • 17 Naredo E, Gamero F, Bonilla G, Uson J, Carmona L, Laffon A. Ultrasonographic assessment of inflammatory activity in rheumatoid arthritis: comparison of extended versus reduced joint evaluation. Clin Exp Rheumatol 2005; 23 (06) 881-884
  • 18 Scheel AK, Hermann KGA, Kahler E. , et al. A novel ultrasonographic synovitis scoring system suitable for analyzing finger joint inflammation in rheumatoid arthritis. Arthritis Rheum 2005; 52 (03) 733-743
  • 19 Hussain Manik Z, George J, Sockalingam S. Ultrasound assessment of synovial thickness of some of the metacarpophalangeal joints of hand in rheumatoid arthritis patients and the normal population. Scientifica (Cairo) 2016; 2016: 5609132
  • 20 Albrecht K, Müller-Ladner U, Strunk J. Quantification of the synovial perfusion in rheumatoid arthritis using Doppler ultrasonography. Clin Exp Rheumatol 2007; 25 (04) 630-638
  • 21 Klauser A, Schirmer M. Contrast-Enhanced Ultrasound in Rheumatic Joint Diseases. In: Quaia E. , ed. Contrast Media in Ultrasonography. Berlin, Germany: Springer; 2005: 365-379
  • 22 Qvistgaard E, Røgind H, Torp-Pedersen S, Terslev L, Danneskiold-Samsøe B, Bliddal H. Quantitative ultrasonography in rheumatoid arthritis: evaluation of inflammation by Doppler technique. Ann Rheum Dis 2001; 60 (07) 690-693
  • 23 Platzgummer H, Schueller G, Grisar J, Weber M, Schueller-Weidekamm C. Quantification of synovitis in rheumatoid arthritis: do we really need quantitative measurement of contrast-enhanced ultrasound?. Eur J Radiol 2009; 71 (02) 237-241
  • 24 Llorente I, Merino L, Escolano E. , et al. Reproducibility of metacarpal bone mineral density measurements obtained by dual-energy X-ray absorptiometry in healthy volunteers and patients with early arthritis. J Clin Densitom 2019
  • 25 Borman P, Babaoğlu S, Gur G, Bingol S, Bodur H. Bone mineral density and bone turnover in patients with psoriatic arthritis. Clin Rheumatol 2008; 27 (04) 443-447
  • 26 Martineau P, Leslie WD, Johansson H. , et al. In which patients does lumbar spine Trabecular Bone Score (TBS) have the largest effect?. Bone 2018; 113: 161-168
  • 27 Matsuno H. Assessment of distal radius bone mineral density in osteoporosis patients receiving denosumab, including those with rheumatoid arthritis and those receiving oral glucocorticoids. Drugs R D 2016; 16 (04) 347-353
  • 28 Gulati AM, Michelsen B, Diamantopoulos A. , et al. Osteoporosis in psoriatic arthritis: a cross-sectional study of an outpatient clinic population. RMD Open 2018; 4 (01) e000631
  • 29 Hinze AM, Louie GHL. Osteoporosis management in ankylosing spondylitis. Curr Treatm Opt Rheumatol 2016; 2 (04) 271-282
  • 30 Dao HH, Do QT, Sakamoto J. Abnormal body composition phenotypes in Vietnamese women with early rheumatoid arthritis. Rheumatology (Oxford) 2011; 50 (07) 1250-1258
  • 31 Turk SA, van Schaardenburg D, Boers M. , et al. An unfavorable body composition is common in early arthritis patients: a case control study. PLOS One 2018; 13 (03) e0193377
  • 32 Reina D, Gómez-Vaquero C, Díaz-Torné C, Solé JMN. Rheumatology Service, Hospital Moisès Broggi. Assessment of nutritional status by dual X-ray absorptiometry in women with rheumatoid arthritis: a case-control study. Medicine (Baltimore) 2019; 98 (06) e14361
  • 33 Müller R, Kull M, Põlluste K, Valner A, Lember M, Kallikorm R. Factors associated with low lean mass in early rheumatoid arthritis: a cross- sectional study. Medicina (Kaunas) 2019; 55 (11) 55
  • 34 Baker JF, Long J, Ibrahim S, Leonard MB, Katz P. Are men at greater risk of lean mass deficits in rheumatoid arthritis?. Arthritis Care Res (Hoboken) 2015; 67 (01) 112-119
  • 35 Valido A, Crespo CL, Pimentel-Santos FM. Muscle evaluation in axial spondyloarthritis—the evidence for sarcopenia. Front Med (Lausanne) 2019; 6: 219
  • 36 Marcora S, Casanova F, Williams E, Jones J, Elamanchi R, Lemmey A. Preliminary evidence for cachexia in patients with well-established ankylosing spondylitis. Rheumatology (Oxford) 2006; 45 (11) 1385-1388
  • 37 Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W. Changes in body composition and bone mineral density in postmenopausal women with psoriatic arthritis. Reumatologia 2017; 55 (05) 215-221
  • 38 Cruz-Jentoft AJ, Bahat G, Bauer J. , et al; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48 (01) 16-31
  • 39 Barnabe C, Finzel S, Stok KS, Geusens P. High-resolution peripheral quantitative CT in rheumatology. Nat Rev Rheumatol 2015; 11 (02) 123
  • 40 Kocijan R, Englbrecht M, Haschka J. , et al. Quantitative and qualitative changes of bone in psoriasis and psoriatic arthritis patients. J Bone Miner Res 2015; 30 (10) 1775-1783
  • 41 Barnabe C, Feehan L. SPECTRA (Study GrouP for XTrEme-CT in RA). High-resolution peripheral quantitative computed tomography imaging protocol for metacarpophalangeal joints in inflammatory arthritis: the SPECTRA collaboration. J Rheumatol 2012; 39 (07) 1494-1495
  • 42 Barnabe C, Toepfer D, Marotte H. , et al; SPECTRA Collaboration. Definition for rheumatoid arthritis erosions imaged with high resolution peripheral quantitative computed tomography and inter-reader reliability for detection and measurement. J Rheumatol 2016; 43 (10) 1935-1940
  • 43 Manske SL, Brunet SC, Finzel S. , et al; The SPECTRA Collaboration OMERACT Working Group. Criterion validity of joint space outcomes with high resolution peripheral quantitative computed tomography. J Rheumatol 2019; 46 (10) 1369-1373
  • 44 Simon D, Kleyer A, Faustini F. , et al. Simultaneous quantification of bone erosions and enthesiophytes in the joints of patients with psoriasis or psoriatic arthritis—effects of age and disease duration. Arthritis Res Ther 2018; 20 (01) 203
  • 45 Wu H, Zhang G, Shi L. , et al. Axial spondyloarthritis: dual-energy virtual noncalcium CT in the detection of bone marrow edema in the sacroiliac joints. Radiology 2019; 290 (01) 157-164
  • 46 Caparbo VF, Furlam P, Saad CGS. , et al. Assessing bone impairment in ankylosing spondylitis (AS) using the Trabecular Bone Score (TBS) and high-resolution peripheral quantitative computed tomography (HR-pQCT). Bone 2019; 122: 8-13
  • 47 Neumann A, Haschka J, Kleyer A. , et al. Cortical bone loss is an early feature of nonradiographic axial spondyloarthritis. Arthritis Res Ther 2018; 20 (01) 202
  • 48 Erlandson MC, Lorbergs AL, Mathur S, Cheung AM. Muscle analysis using pQCT, DXA and MRI. Eur J Radiol 2016; 85 (08) 1505-1511
  • 49 Baker JF, Mostoufi-Moab S, Long J, Taratuta E, Leonard MB, Zemel B. Low muscle density is associated with deteriorations in muscle strength and physical functioning in rheumatoid arthritis. Arthritis Care Res (Hoboken) 2019 ; December 16 (Epub ahead of print)
  • 50 Fuller H, Fuller R, Pereira RMR. High resolution peripheral quantitative computed tomography for the assessment of morphological and mechanical bone parameters [in Portuguese]. Rev Bras Reumatol 2015; 55 (04) 352-362
  • 51 Coupal TM, Mallinson PI, Gershony SL. , et al. Getting the most from your dual-energy scanner: recognizing, reducing, and eliminating artifacts. AJR Am J Roentgenol 2016; 206 (01) 119-128
  • 52 Chou H, Chin TY, Peh WC. Dual-energy CT in gout—a review of current concepts and applications. J Med Radiat Sci 2017; 64 (01) 41-51
  • 53 Yu Z, Mao T, Xu Y. , et al. Diagnostic accuracy of dual-energy CT in gout: a systematic review and meta-analysis. Skeletal Radiol 2018; 47 (12) 1587-1593
  • 54 Diekhoff T, Scheel M, Hermann S, Mews J, Hamm B, Hermann KA. Osteitis: a retrospective feasibility study comparing single-source dual-energy CT to MRI in selected patients with suspected acute gout. Skeletal Radiol 2017; 46 (02) 185-190
  • 55 Jans L, De Kock I, Herregods N. , et al. Dual-energy CT: a new imaging modality for bone marrow oedema in rheumatoid arthritis. Ann Rheum Dis 2018; 77 (06) 958-960
  • 56 Fukuda T, Umezawa Y, Tojo S. , et al. Initial experience of using dual-energy CT with an iodine overlay image for hand psoriatic arthritis: comparison study with contrast-enhanced MR imaging. Radiology 2017; 284 (01) 134-142
  • 57 Boesen M, Kubassova O, Sudoł-Szopińska I. , et al. MR Imaging of joint infection and inflammation with emphasis on dynamic contrast-enhanced MR imaging. PET Clin 2018; 13 (04) 523-550
  • 58 Tofts PS, Kermode AG. Blood brain barrier permeability in multiple sclerosis using labelled DTPA with PET, CT and MRI. J Neurol Neurosurg Psychiatry 1989; 52 (08) 1019-1020
  • 59 Shukla-Dave A, Obuchowski NA, Chenevert TL. , et al. Quantitative Imaging Biomarkers Alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 2019; 49 (07) e101-e121
  • 60 Barendregt AM, Bray TJP, Hall-Craggs MA, Maas M. Emerging quantitative MR imaging biomarkers in inflammatory arthritides. Eur J Radiol 2019; 121: 108707
  • 61 Fasler DA, Ingrisch M, Nanz D. , et al. Rheumatoid cervical pannus: feasibility of volume and perfusion quantification using dynamic contrast enhanced time resolved MRI. Acta Radiol 2020; 61 (02) 227-235
  • 62 Cimmino MA, Barbieri F, Boesen M. , et al. Dynamic contrast-enhanced magnetic resonance imaging of articular and extraarticular synovial structures of the hands in patients with psoriatic arthritis. J Rheumatol Suppl 2012; 89: 44-48
  • 63 Schwenzer NF, Kötter I, Henes JC. , et al. The role of dynamic contrast-enhanced MRI in the differential diagnosis of psoriatic and rheumatoid arthritis. AJR Am J Roentgenol 2010; 194 (03) 715-720
  • 64 Schraml C, Schwenzer NF, Martirosian P. , et al. Assessment of synovitis in erosive osteoarthritis of the hand using DCE-MRI and comparison with that in its major mimic, the psoriatic arthritis. Acad Radiol 2011; 18 (07) 804-809
  • 65 Barendregt AM, van Gulik EC, Groot PFC. , et al. Prolonged time between intravenous contrast administration and image acquisition results in increased synovial thickness at magnetic resonance imaging in patients with juvenile idiopathic arthritis. Pediatr Radiol 2019; 49 (05) 638-645
  • 66 Hemke R, Nusman CM, van den Berg JM. , et al. Construct validity of pixel-by-pixel DCE-MRI: correlation with conventional MRI scores in juvenile idiopathic arthritis. Eur J Radiol 2017; 94: 1-5
  • 67 Zhang M, Zhou L, Huang N, Zeng H, Liu S, Liu L. Assessment of active and inactive sacroiliitis in patients with ankylosing spondylitis using quantitative dynamic contrast-enhanced MRI. J Magn Reson Imaging 2017; 46 (01) 71-78
  • 68 Østergaard M, Peterfy CG, Bird P. , et al. The OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging (MRI) scoring system: Updated recommendations by the OMERACT MRI in Arthritis Working Group. J Rheumatol 2017; 44 (11) 1706-1712
  • 69 Conaghan PG, Østergaard M, Bowes MA. , et al. Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitative and quantitative techniques. Ann Rheum Dis 2016; 75 (06) 1024-1033
  • 70 Trattnig S, Marlovits S, Gebetsroither S. , et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imaging 2007; 26 (04) 974-982
  • 71 Müller-Lutz A, Schleich C, Sewerin P. , et al. Comparison of quantitative and semiquantitative dynamic contrast-enhanced MRI with respect to their correlation to delayed gadolinium-enhanced MRI of the cartilage in patients with early rheumatoid arthritis. J Comput Assist Tomogr 2015; 39 (01) 64-69
  • 72 Renner N, Krönke G, Rech J. , et al. Anti–citrullinated protein antibody positivity correlates with cartilage damage and proteoglycan levels in patients with rheumatoid arthritis in the hand joints. Arthritis Rheumatol 2014; 66 (12) 3283-3288
  • 73 Herz B, Albrecht A, Englbrecht M. , et al. Osteitis and synovitis, but not bone erosion, is associated with proteoglycan loss and microstructure damage in the cartilage of patients with rheumatoid arthritis. Ann Rheum Dis 2014; 73 (06) 1101-1106
  • 74 Schleich C, Müller-Lutz A, Sewerin P. , et al. Intra-individual assessment of inflammatory severity and cartilage composition of finger joints in rheumatoid arthritis. Skeletal Radiol 2015; 44 (04) 513-518
  • 75 Tiderius CJ, Sandin J, Svensson J, Dahlberg LE, Jacobsson L. Knee cartilage quality assessed with dGEMRIC in rheumatoid arthritis patients before and after treatment with a TNF inhibitor. Acta Radiol 2010; 51 (09) 1034-1037
  • 76 Sewerin P, Schleich C, Brinks R. , et al. Assessing associations of synovial perfusion, cartilage quality, and outcome in rheumatoid arthritis using dynamic contrast-enhanced magnetic resonance imaging. J Rheumatol 2020; 47 (01) 15-19
  • 77 Malayeri AA, El Khouli RH, Zaheer A. , et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 2011; 31 (06) 1773-1791
  • 78 de Mello R, Ma Y, Ji Y, Du J, Chang EY. Quantitative MRI musculoskeletal techniques: an update. AJR Am J Roentgenol 2019; 213 (03) 524-533
  • 79 Sahin N, Hacibeyoglu H, Ince O. , et al. Is there a role for DWI in the diagnosis of sacroiliitis based on ASAS criteria?. Int J Clin Exp Med 2015; 8 (05) 7544-7552
  • 80 Vendhan K, Bray TJ, Atkinson D. , et al. A diffusion-based quantification technique for assessment of sacroiliitis in adolescents with enthesitis-related arthritis. Br J Radiol 2016; 89 (1059): 20150775
  • 81 Barendregt AM, van Gulik EC, Lavini C. , et al. Diffusion-weighted imaging for assessment of synovial inflammation in juvenile idiopathic arthritis: a promising imaging biomarker as an alternative to gadolinium-based contrast agents. Eur Radiol 2017; 27 (11) 4889-4899
  • 82 J P Bray T, Vendhan K, Ambrose N. , et al. Diffusion-weighted imaging is a sensitive biomarker of response to biologic therapy in enthesitis-related arthritis. Rheumatology (Oxford) 2017; 56 (03) 399-407
  • 83 Lee KH, Chung HY, Xu X, Lau VWH, Lau CS. Apparent diffusion coefficient as an imaging biomarker for spinal disease activity in axial spondyloarthritis. Radiology 2019; 291 (01) 121-128
  • 84 Beltran LS, Samim M, Gyftopoulos S, Bruno MT, Petchprapa CN. Does the addition of DWI to fluid-sensitive conventional MRI of the sacroiliac joints improve the diagnosis of sacroiliitis?. AJR Am J Roentgenol 2018; 210 (06) 1309-1316
  • 85 Bradbury LA, Hollis KA, Gautier B. , et al. Diffusion-weighted imaging is a sensitive and specific magnetic resonance sequence in the diagnosis of ankylosing spondylitis. J Rheumatol 2018; 45 (06) 771-778
  • 86 Chilla GS, Tan CH, Xu C, Poh CL. Diffusion weighted magnetic resonance imaging and its recent trend—a survey. Quant Imaging Med Surg 2015; 5 (03) 407-422
  • 87 Lambert RG, Maksymowych WP. Diffusion-weighted imaging in axial spondyloarthritis: a measure of effusion or does it elicit confusion?. J Rheumatol 2018; 45 (06) 729-730
  • 88 Bray TJP, Dudek A, Sakai N. , et al. The BEACH tool: a quantitative MRI-based method for measuring oedema and fat metaplasia in spondyloarthritis. Ann Rheum Dis 2018; 77: 821
  • 89 Le Bihan D, Mangin JF, Poupon C. , et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001; 13 (04) 534-546
  • 90 Giraudo C, Motyka S, Weber M, Feiweier T, Trattnig S, Bogner W. Diffusion tensor imaging of healthy skeletal muscles: a comparison between 7 T and 3 T. Invest Radiol 2019; 54 (01) 48-54
  • 91 de Visser SK, Crawford RW, Pope JM. Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging. Osteoarthritis Cartilage 2008; 16 (01) 83-89
  • 92 Agarwal V, Kumar M, Singh JK, Rathore RK, Misra R, Gupta RK. Diffusion tensor anisotropy magnetic resonance imaging: a new tool to assess synovial inflammation. Rheumatology (Oxford) 2009; 48 (04) 378-382
  • 93 Raya JG, Horng A, Dietrich O. , et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology 2012; 262 (02) 550-559
  • 94 Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168 (02) 497-505
  • 95 Kang KM, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology 2014; 270 (02) 444-453
  • 96 Zhao YH, Li SL, Liu ZY. , et al. Detection of active sacroiliitis with ankylosing spondylitis through intravoxel incoherent motion diffusion-weighted MR imaging. Eur Radiol 2015; 25 (09) 2754-2763
  • 97 Le Bihan D. What can we see with IVIM MRI?. Neuroimage 2019; 187: 56-67
  • 98 Sun H, Liu K, Liu H. , et al. Comparison of bi-exponential and mono-exponential models of diffusion-weighted imaging for detecting active sacroiliitis in ankylosing spondylitis. Acta Radiol 2018; 59 (04) 468-477
  • 99 Fujimori M, Murakami K, Sugimori H. , et al. Intravoxel incoherent motion MRI for discrimination of synovial proliferation in the hand arthritis: a prospective proof-of-concept study. J Magn Reson Imaging 2019; 50 (04) 1199-1206
  • 100 Juras V, Schreiner M, Laurent D. , et al. The comparison of the performance of 3 T and 7 T T2 mapping for untreated low-grade cartilage lesions. Magn Reson Imaging 2019; 55: 86-92
  • 101 Meng XH, Wang Z, Guo L. , et al. Quantitative evaluation of knee cartilage and meniscus destruction in patients with rheumatoid arthritis using T1ρ and T2 mapping. Eur J Radiol 2017; 96: 91-97
  • 102 Welsch GH, Apprich S, Zbyn S. , et al. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol 2011; 21 (06) 1136-1143
  • 103 Renner N, Kleyer A, Krönke G. , et al. T2 mapping as a new method for quantitative assessment of cartilage damage in RA. J Rheumatol 2019 ; August 15 (Epub ahead of print)
  • 104 Tsushima H, Okazaki K, Takayama Y. , et al. Evaluation of cartilage degradation in arthritis using T1ρ magnetic resonance imaging mapping. Rheumatol Int 2012; 32 (09) 2867-2875
  • 105 Ku E, Pedoia V, Tanaka M. , et al. Evaluating radiocarpal cartilage matrix changes 3-months after anti-TNF treatment for rheumatoid arthritis using MR T1ρ imaging. J Magn Reson Imaging 2017; 45 (05) 1514-1522
  • 106 Hirose J, Nishioka H, Tsukano M, Matsubara S, Usuku K, Mizuta H. Matrix changes in articular cartilage in the knee of patients with rheumatoid arthritis after biological therapy: 1-year follow-up evaluation by T2 and T1ρ MRI quantification. Clin Radiol 2018; 73 (11) 984.e11-984.e18
  • 107 Kim HK, Laor T, Graham TB. , et al. T2 relaxation time changes in distal femoral articular cartilage in children with juvenile idiopathic arthritis: a 3-year longitudinal study. AJR Am J Roentgenol 2010; 195 (04) 1021-1025
  • 108 Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8 (04) 355-368
  • 109 Siriwanarangsun P, Statum S, Biswas R, Bae WC, Chung CB. Ultrashort time to echo magnetic resonance techniques for the musculoskeletal system. Quant Imaging Med Surg 2016; 6 (06) 731-743
  • 110 Hodgson RJ, Evans R, Wright P. , et al. Quantitative magnetization transfer ultrashort echo time imaging of the Achilles tendon. Magn Reson Med 2011; 65 (05) 1372-1376
  • 111 Hodgson RJ, Menon N, Grainger AJ. , et al. Quantitative MRI measurements of the Achilles tendon in spondyloarthritis using ultrashort echo times. Br J Radiol 2012; 85 (1015): e293-e299
  • 112 Willmering MM, Robison RK, Wang H, Pipe JG, Woods JC. Implementation of the FLORET UTE sequence for lung imaging. Magn Reson Med 2019; 82 (03) 1091-1100
  • 113 Chen B, Zhao Y, Cheng X. , et al. Three-dimensional ultrashort echo time cones (3D UTE-Cones) magnetic resonance imaging of entheses and tendons. Magn Reson Imaging 2018; 49: 4-9
  • 114 Yang J, Shao H, Ma Y. , et al. Quantitative ultrashort echo time magnetization transfer (UTE-MT) for diagnosis of early cartilage degeneration: comparison with UTE-T2* and T2 mapping. Quant Imaging Med Surg 2020; 10 (01) 171-183
  • 115 Breighner RE, Endo Y, Konin GP, Gulotta LV, Koff MF, Potter HG. Technical developments: zero echo time imaging of the shoulder: enhanced osseous detail by using MR imaging. Radiology 2018; 286 (03) 960-966
  • 116 Singh D, Miles K. Multiparametric PET/CT in oncology. Cancer Imaging 2012; 12: 336-344
  • 117 Bhattarai A, Nakajima T, Sapkota S. , et al. Diagnostic value of 18F-fluorodeoxyglucose uptake parameters to differentiate rheumatoid arthritis from other types of arthritis. Medicine (Baltimore) 2017; 96 (25) e7130
  • 118 Alehashemi S, Gholami S, Salavati A. , et al. Quantification of FDG uptake of the joints in rheumatoid arthritis and correlations with clinical disease activity using volumetric PET/CT parameters. J Nucl Med 2015; 56: 368
  • 119 Kubota K, Ito K, Morooka M. , et al. Whole-body FDG-PET/CT on rheumatoid arthritis of large joints. Ann Nucl Med 2009; 23 (09) 783-791
  • 120 Fosse P, Kaiser MJ, Namur G, de Seny D, Malaise MG, Hustinx R. 18F- FDG PET/CT joint assessment of early therapeutic response in rheumatoid arthritis patients treated with rituximab. Eur J Hybrid Imaging 2018; 2 (01) 6
  • 121 Suto T, Okamura K, Yonemoto Y, Okura C, Tsushima Y, Takagishi K. Prediction of large joint destruction in patients with rheumatoid arthritis using 18F-FDG PET/CT and disease activity score. Medicine (Baltimore) 2016; 95 (07) e2841
  • 122 Mehta NN, Yu Y, Saboury B. , et al. Systemic and vascular inflammation in patients with moderate to severe psoriasis as measured by [18F]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT): a pilot study. Arch Dermatol 2011; 147 (09) 1031-1039
  • 123 Chaudhari AJ, Ferrero A, Godinez F. , et al. High-resolution (18)F-FDG PET/CT for assessing disease activity in rheumatoid and psoriatic arthritis: findings of a prospective pilot study. Br J Radiol 2016; 89 (1063): 20160138
  • 124 An YS, Suh CH, Jung JY, Cho H, Kim HA. The role of 18F-fluorodeoxyglucose positron emission tomography in the assessment of disease activity of adult-onset Still's disease. Korean J Intern Med (Korean Assoc Intern Med) 2017; 32 (06) 1082-1089
  • 125 Bruijnen ST, van der Weijden MA, Klein JP. , et al. Bone formation rather than inflammation reflects ankylosing spondylitis activity on PET-CT: a pilot study. Arthritis Res Ther 2012; 14 (02) R71
  • 126 Strobel K, Fischer DR, Tamborrini G. , et al. 18F-fluoride PET/CT for detection of sacroiliitis in ankylosing spondylitis. Eur J Nucl Med Mol Imaging 2010; 37 (09) 1760-1765
  • 127 Bruijnen STG, Verweij NJF, van Duivenvoorde LM. , et al. Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography. Rheumatology (Oxford) 2018; 57 (04) 770
  • 128 Wang Z, Cai L, Xu T, Tang D, Liu L, Chen Y. Comparative evaluation of 68Ga-citrate PET/CT and 18F-FDG PET/CT in the diagnosis of type II collagen-induced arthritis in rats. Contrast Media Mol Imaging 2019; 2019: 2353658
  • 129 Beckford-Vera DR, Gonzalez-Junca A, Janneck JS. , et al. PET/CT imaging of human TNFα Using [89Zr]Certolizumab Pegol in a Transgenic Preclinical Model of Rheumatoid Arthritis. Mol Imaging Biol 2020; 22 (01) 105-114
  • 130 de Groot M, Patel N, Manavaki R. , et al. Quantifying disease activity in rheumatoid arthritis with the TSPO PET ligand 18F-GE-180 and comparison with 18F-FDG and DCE-MRI. EJNMMI Res 2019; 9 (01) 113
  • 131 Dickens AM, Vainio S, Marjamäki P. , et al. Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers 11C-(R)-PK11195 and 18F-GE-180. J Nucl Med 2014; 55 (03) 466-472
  • 132 Descamps L, Olagne L, Merlin C, Cachin F, Soubrier M, Mathieu S. Utility of PET/CT in the diagnosis of inflammatory rheumatic diseases: a systematic review and meta-analysis. Ann Rheum Dis 2018; 77 (11) e81
  • 133 Giraudo C, Raderer M, Karanikas G. , et al. 18F-Fluorodeoxyglucose positron emission tomography/magnetic resonance in lymphoma: comparison with 18F-fluorodeoxyglucose positron emission tomography/computed tomography and with the addition of magnetic resonance diffusion-weighted imaging. Invest Radiol 2016; 51 (03) 163-169
  • 134 Kogan F, Fan AP, Monu U, Iagaru A, Hargreaves BA, Gold GE. Quantitative imaging of bone-cartilage interactions in ACL-injured patients with PET-MRI. Osteoarthritis Cartilage 2018; 26 (06) 790-796
  • 135 Sawicki LM, Lütje S, Baraliakos X. , et al. Dual-phase hybrid 18 F-fluoride positron emission tomography/MRI in ankylosing spondylitis: investigating the link between MRI bone changes, regional hyperaemia and increased osteoblastic activity. J Med Imaging Radiat Oncol 2018; 62 (03) 313-319
  • 136 Eiber M, Takei T, Souvatzoglou M. , et al. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med 2014; 55 (02) 191-197
  • 137 Park CR, Lee Y. Comparison of PET image quality using simultaneous PET/MR by attenuation correction with various MR pulse sequences. Nucl Eng Technol 2019; 51: 1610-1615
  • 138 Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 2019; 32 (04) 582-596
  • 139 Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol 2019; 23 (03) 304-311
  • 140 Liu F, Zhou Z, Samsonov A. , et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology 2018; 289 (01) 160-169
  • 141 Thodberg HH, Kreiborg S, Juul A, Pedersen KD. The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 2009; 28 (01) 52-66
  • 142 Pfeil A, Renz DM, Hansch A. , et al. The usefulness of computer-aided joint space analysis in the assessment of rheumatoid arthritis. Joint Bone Spine 2013; 80 (04) 380-385
  • 143 Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278 (02) 563-577
  • 144 Luppino-Assad R, Magalhaes Tenório AP, Dalto VF. , et al. Radiomics association of MRI texture features with spondyloarthritis and sacroiliitis. Eleventh International Congress on Spondyloarthritides. Clin Exp Rheumatol 2018; 36: 689-762
  • 145 Lezcano-Valverde JM, Salazar F, León L. , et al. Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach. Sci Rep 2017; 7 (01) 10189