Subscribe to RSS
DOI: 10.1055/s-0040-1719824
Diastereoselective Synthesis of (3R,5R)-γ-Hydroxypiperazic Acid
This work was supported by a grant from the National Science Foundation (Grant No. CHE2109008).
Abstract
We report an asymmetric synthesis of the (3R,5R)-γ-hydroxypiperazic acid (γ-OHPiz) residue encountered in several bioactive nonribosomal peptides. Our strategy relies on a diastereoselective enolate hydroxylation reaction and electrophilic N-amination to provide the acyclic γ-OHPiz precursor. This orthogonally protected α-hydrazino acid intermediate is amenable to late-stage diazinane ring formation following incorporation into a peptide chain. We determined the N-terminal amide rotamer propensity of the γ-OHPiz residue and showed that the γ-OH substituent enhances trans-amide bias relative to piperazic acid.
Key words
nonribosomal peptides - natural products - piperazic acid - α-hydrazino acid - oxaziridineSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719824.
- Supporting Information
Publication History
Received: 24 June 2021
Accepted after revision: 19 July 2021
Article published online:
12 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Vidal J. In Amino Acids, Peptides and Proteins in Organic Chemistry, Vol. 2. Hughes AB. Wiley-VCH; Weinheim: 2009: 35-92
- 1b Le Goff G, Ouazzani J. Bioorg. Med. Chem. 2014; 22: 6529
- 2a Ciufolini M, Xi N. Chem. Soc. Rev. 1998; 27: 437
- 2b Xi N, Alemany LB, Ciufolini MA. J. Am. Chem. Soc. 1998; 120: 80
- 3a Oelke AJ, France DJ, Hofmann T, Wuitschik G, Ley SV. Nat. Prod. Rep. 2011; 28: 1445
- 3b Handy EL, Sello JK. Peptidomimetics I,In Topics in Heterocyclic Chemistry, Vol. 48 . Dubell WD. Springer; Cham: 2015: 91-124
- 3c Morgan KD, Andersen RJ, Ryan KS. Nat. Prod. Rep. 2019; 36: 1628
- 4 Miller ED, Kauffman CA, Jensen PR, Fenical W. J. Org. Chem. 2007; 72: 323
- 5a Hashizume H, Sawa R, Yamashita K, Nishimura Y, Igarashi M. J. Antibiot. 2017; 70: 699
- 5b Igarashi M, Sawa R, Kinoshita N, Hashizume H, Nakagawa N, Homma Y, Nishimura Y, Akamatsu Y. J. Antibiot. 2008; 61: 387
- 6 Hale KJ, Jogiya N, Manaviazar S. Tetrahedron Lett. 1998; 39: 7163
- 7 Kamenecka TM, Danishefsky SJ. Angew. Chem. Int. Ed. 1998; 37: 2995
- 8 Depew KM, Kamenecka TM, Danishefsky SJ. Tetrahedron Lett. 2000; 41: 289
- 9a Ushiyama R, Yonezawa Y, Shin C.-g. Chem. Lett. 2001; 30: 1172
- 9b Li W, Gan J, Ma D. Org. Lett. 2009; 11: 5694
- 9c Kennedy JP, Lindsley CW. Tetrahedron Lett. 2010; 51: 2493
- 10a Makino K, Jiang H, Suzuki T, Hamada Y. Tetrahedron: Asymmetry 2006; 17: 1644
- 10b Kennedy JP, Brogan JT, Lindsley CW. Tetrahedron Lett. 2008; 49: 4116
- 11 Elbatrawi YM, Kang CW, Del Valle JR. Org. Lett. 2018; 20: 2707
- 12 Hanessian S, Vanasse B. Can. J. Chem. 1993; 71: 1401
- 13 Davis FA, Chen BC. Chem. Rev. 1992; 92: 919
- 14 Hanessian S, Schaum R. Tetrahedron Lett. 1997; 38: 163
- 15 Davis FA, Wei JH, Sheppard AC, Gubernick S. Tetrahedron Lett. 1987; 28: 5115
- 16a Armstrong A, Jones LH, Knight JD, Kelsey RD. Organic Lett. 2005; 7: 713
- 16b Kang CW, Sarnowski MP, Elbatrawi YM, Del Valle JR. J. Org. Chem. 2017; 82: 1833
- 17 Sarnowski MP, Kang CW, Elbatrawi YM, Wojtas L, Del Valle JR. Angew. Chem. Int. Ed. 2017; 56: 2083
- 18 Procedure for the Synthesis of 8 To a solution of 7 (206 mg, 565 μmol) and PPh3 (371 mg, 1.41 mmol) in 30 mL anhydrous THF was added DIAD (275 μL, 1.41 mmol) dropwise over 5 min at rt. The reaction was stirred for 3 h at 45 °C. The reaction was diluted with EtOAc and washed with brine, then dried over Na2SO4, filtered, and concentrated. Purification by flash chromatography over silica gel (50% EtOAc/hexanes) provided Ac-(N′-Boc)-(γ-OMOM)Piz-OMe (139 mg, 401 μmol) as a colorless oil. The purified heterocycle was dissolved in 10 mL MeOH and cooled to 0 °C. Acetyl chloride (5.00 mL, 70.3 mmol) was added dropwise, and the reaction was stirred at 0 °C for 45 min. The solution was concentrated, and the resulting solid was dissolved in sat. aq. NaHCO3. The mixture was extracted with EtOAc, and the combined organic layers were washed with brine, then dried over Na2SO4, filtered, and concentrated to afford 8 as a white solid (81.1 mg, 401 μmol, 71% over 2 steps). 1H NMR (400 MHz, CDCl3): δ = 5.24 (dd, J = 6.7, 1.5 Hz, 1 H), 4.83–4.71 (m, 1 H), 3.90 (m, 1 H), 3.75 (s, 3 H), 3.00–2.88 (m, 2 H), 2.43 (d, J = 14.3 Hz, 1 H), 2.22 (s, 3 H), 2.05 (ddd, J = 14.4, 6.8, 2.4 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 173.6, 172.6, 62.0, 52.9, 52.7, 47.6, 32.7, 20.8. HRMS (ESI-TOF): m/z [M + H]+ calcd for C8H15N2O4: 203.1026; found: 203.1026.
- 19 Howard EH, Cain CF, Kang C, Del Valle JR. J. Org. Chem. 2020; 85: 1680
- 20 Elbatrawi YM, Pedretty KP, Giddings N, Woodcock HL, Del Valle JR. J. Org. Chem. 2020; 85: 4207