Subscribe to RSS
DOI: 10.1055/s-0040-1719879
Chiral Calcium Phosphate Catalyzed Enantioselective Synthesis of All-Carbon Quaternary Center by Friedel–Crafts Alkylation Reaction of Pyrroles and Trifluoromethylated Nitrostyrenes
JSPS KAKENHI Grant Numbers JP20H00380 and JP20H04826 (Hybrid Catalysis).
Abstract
A chiral calcium phosphate-catalyzed enantioselective Friedel–Crafts alkylation reaction of pyrroles and α-trifluoromethyl-β-nitrostyrenes has been developed. Pyrroles bearing an all-carbon quaternary center at 2-position were obtained with high to excellent enantioselectivity. Use of 4,7-dihydroindole as a nucleophile and subsequent oxidation resulted in the formation a 2-substituted indole derivative with excellent enantioselectivity. A 3,4-dihydropyrrolo[1,2-c]pyrimidine derivative was successfully synthesized by reduction followed by benzoylation of the product without loss of enantioselectivity. Application to a 1 mmol scale reaction was successfully achieved.
Key words
enantioselective reaction - chiral calcium phosphate - organocatalyst - trifluoromethyl group - nitrostyrene - pyrrolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719879.
- Supporting Information
Publication History
Received: 19 November 2021
Accepted after revision: 13 December 2021
Article published online:
04 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Liu Y, Han S.-J, Liu W.-B, Stoltz BM. Acc. Chem. Res. 2015; 48: 740
- 1b Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
- 1c Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; 117: 12564
- 1d Li H, Lu Y. Asian J. Org. Chem. 2017; 6: 1130
- 1e Zhou F, Zhu L, Pan B.-W, Shi Y, Liu Y.-L, Zhou J. Chem. Sci. 2020; 11: 9341
-
2a
Wendlandt AE,
Vangal P,
Jacobsen EN.
Nature 2018; 556: 447
- 2b Ma C, Jiang F, Sheng F-T, Jiao Y, Mei G-J, Shi F. Angew. Chem. Int. Ed. 2019; 58: 3014
- 2c Kayal S, Kikuchi J, Shimizu M, Terada M. ACS Catal. 2019; 9: 6846
- 2d Li X, Duan M, Deng Z, Shao Q, Chen M, Zhu G, Houk KN, Sun J. Nat. Catal. 2020; 3: 1010
- 2e He S, Gu H, He Y.-P, Yang X. Org. Lett. 2020; 22: 5633
- 3a You SL, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
- 3b Zeng M, You S.-L. Synlett 2010; 1289
- 3c Bartoli G, Bencivenni G, Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449
- 3d Terrasson V, de Figueiredo RM, Campagne JM. Eur. J. Org. Chem. 2010; 2635
- 3e Alonso DA, Baeza A, Chinchilla R, Gómez C, Guillena G, Pastor IM, Ramón DJ. Molecules 2017; 22: 895
- 4a Sheng Y.-F, Gu Q, Zhang A.-J, You S.-L. J. Org. Chem. 2009; 74: 6899
- 4b Carmona D, Méndez I, Rodríguez R, Lahoz FJ, García-Orduña P, Oro LA. Organometallics 2014; 33: 443
- 4c Fan Y, Kass SR. J. Org. Chem. 2017; 82: 13288
- 4d Tanaka K, Sakuragi K, Ozaki H, Takada Y. Chem. Commun. 2018; 54: 6328
- 5 Itoh J, Fuchibe K, Akiyama T. Angew. Chem. Int. Ed. 2008; 47: 4016
- 6a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 6b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 6c Akiyama T. Chem. Rev. 2007; 107: 5744
- 6d Terada M. Synthesis 2010; 1929
- 6e Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 6f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
- 6g Merad J, Lalli G, Bernadat G, Maur J, Masson G. Chem. Eur. J. 2018; 24: 3925
- 6h Maji R, Mallojjala SC, Wheeler SE. Chem. Soc. Rev. 2018; 47: 1142
- 7a Chen L.-A, Tang X, Xi J, Xu W, Gong L, Meggers E. Angew. Chem. Int. Ed. 2013; 52: 14021
- 7b Weng J.-Q, Deng Q.-M, Wu L, Xu K, Wu H, Liu R.-R, Gao J.-R, Jia Y.-X. Org. Lett. 2014; 16: 776
- 7c Mori K, Wakazawa M, Akiyama T. Chem. Sci. 2014; 5: 1799
- 8a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 8b Sani M, Volonterio A, Zanda M. ChemMedChem 2007; 2: 1693
- 8c Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 8d Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
- 9a Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
- 9b Chen P, Liu G. Synthesis 2013; 45: 2919
- 9c Dilman AD, Levin VV. Eur. J. Org. Chem 2015; 831
- 9d Oh EH, Kim HJ, Han SB. Synthesis 2018; 50: 3346
- 10a Gao J.-R, Wu H, Xiang B, Yu W.-B, Han L, Jia Y.-X. J. Am. Chem. Soc. 2013; 135: 2983
- 10b Xu W, Shen X, Ma Q, Gong L, Meggers E. ACS Catal. 2016; 6: 7641
- 10c Wang C, Li N, Zhu W.-J, Gong J.-F, Song M.-P. J. Org. Chem. 2019; 84: 191
- 10d Chen C, Wu W.-B, Li Y.-H, Zhao Q.-H, Yu J.-S, Zhou J. Org. Lett. 2020; 22: 2099
- 10e Zhu W.-J, Gong J.-F, Song M.-P. J. Org. Chem. 2020; 85: 9525
- 11a Parra A, Reboredo S, Castro AM. M, Alemán J. Org. Biomol. Chem. 2012; 10: 5001
- 11b Lalli C, Dumoulin A, Lebée C, Drouet F, Guérineau V, Touboul D, Gandon V, Zhu J, Masson J. Chem. Eur. J. 2015; 21: 1704
- 11c Li X.-Y, Yuan W.-Q, Tang S, Huang Y.-W, Xue J.-H, Fu LN, Guo Q.-X. Org. Lett. 2017; 19: 1120
- 11d Fang X, Deng Z, Zheng W, Antilla JC. ACS Catal. 2019; 9: 1748
- 11e Cao R, Antilla JC. Org. Lett. 2020; 22: 5958
- 12 Ibáñez I, Kaneko M, Kamei Y, Tsutsumi R, Yamanaka M, Akiyama T. ACS Catal. 2019; 9: 6903
- 13 Petri GL, Spanó V, Spatola R, Holl R, Raimondi MV, Barraja P, Montalbano A. Eur. J. Med. Chem. 2020; 208: 112783
- 14a Palmieri A, Petrini M. Org. Biomol. Chem. 2020; 18: 4533
- 14b Gaviña D, Escolano M, Torres J, Alzuet-Piña G, Sánchez-Roselló M, Pozo C. Adv. Synth. Catal. 2021; 363: 3439
- 14c Borah B, Dwivedi KD, Chowhan LR. Asian J. Org. Chem. 2021; 10: 2709
- 14d Sheng Y.-F, Gu Q, Zhang A.-J, You S.-L. J. Org. Chem. 2009; 74: 6899
- 15 Sheng Y.-F, Li G.-Q, Kang Q, Zhang A.-J, You S.-L. Chem. Eur. J. 2009; 15: 3351
- 16 Uchikura T, Suzuki R, Suda Y, Akiyama T. ChemCatChem 2020; 12: 4784
- 17 CCDC 2123077 (6) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
For reviews on the construction of chiral quaternary carbon center, see:
For recent examples, see:
For reviews on enantioselective Friedel–Crafts alkylation reaction using organocatalysts, see:
For selected examples using nitroalkene, see:
For seminal works on chiral phosphoric acid catalysis, see:
For reviews, see:
For a review on chiral calcium phosphate catalyzed reactions, see:
For recent reports, see:
For reviews on the Friedel–Crafts alkylation reaction of pyrroles with nitroalkenes, see:
For a seminal work using pyrrole as a nucleophile, see: