Subscribe to RSS
DOI: 10.1055/s-0040-1719891
Direct Synthesis of Disubstituted Trifluoromethylthiolated Alkenes
We thank the Agence Nationale de la Recherche Labex SynOrg (ANR-11-LABX-0029), Carnot Institute I2C, the graduate school for research XL-Chem (ANR-18-EURE-0020 XL CHEM), and Region Normandie. D.D. and T.B. thank the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 758710). J.F. thanks the Fondation de la Maison de la Chimie (no 212420) for the financial support.This work has also been partially supported by the University of Rouen Normandy, INSA Rouen Normandy, the Centre National de la Recherche Scientifique (CNRS), European Regional Development Fund (ERDF).
Dedicated to Prof. Ferenc Fülöp
Abstract
In the field of organofluorine chemistry, the quest for emergent fluorinated groups is in high demand. In particular, the scientific community has shown special interest in the SCF3 residue thanks to its unique properties. Indeed, over the last decade, the SCF3 group has become a pivotal fluorinated moiety, as demonstrated by several SCF3-containing compounds of interest, and, related to that, the steadily increasing number of synthetic methods that are available to access such molecules. In this Short Review, the main advances made for the synthesis of trifluoromethylthiolated disubstituted alkenes will be discussed and highlighted.
1 Introduction
2 Trifluoromethylthiolation of Prefunctionalized Alkenes
3 Direct C–H Trifluoromethylthiolation of Alkenes
4 Trifluoromethylthiolation of Miscellaneous Derivatives
5 Conclusion
Key words,
trifluoromethylthiolation - synthetic methodologies - organofluorine chemistry - disubstituted olefins - homogeneous catalysis - transition-metal-free reactionsPublication History
Received: 22 November 2021
Accepted after revision: 20 December 2021
Article published online:
01 March 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1b Liu F, Grainger DW. C. Fluorinated Biomaterials . In Biomaterials Science, 3rd ed. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Academic Press; Amsterdam: 2013: 92
- 1c Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 1d Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 1e Bao-Cheng W, Li-Jun W, Bo J, Shuai-Yu W, Ning W, Xiang-Qian L, Da-Yong S. Mini-Rev. Med. Chem. 2017; 17: 683
- 1f Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
- 1g Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
- 1h Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Chem. Rev. 2022; 122: 167
- 2 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 3 Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
- 4a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 4b Yanai H, Taguchi T. Eur. J. Org. Chem. 2011; 5939
- 4c Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 4d Landelle G, Panossian A, Pazenok S, Vors J.-P, Leroux FR. Beilstein J. Org. Chem. 2013; 9: 2476
- 4e Landelle G, Panossian A, Leroux FR. Curr. Top. Med. Chem. 2014; 14: 941
- 4f Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
- 4g Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 4h Belhomme M.-C, Besset T, Poisson T, Pannecoucke X. Chem. Eur. J. 2015; 21: 12836
- 4i Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
- 4j Ni C, Hu J. Chem. Soc. Rev. 2016; 45: 5441
- 4k Besset T, Jubault P, Pannecoucke X, Poisson T. Org. Chem. Front. 2016; 3: 1004
- 4l Zhang X, Cao S. Tetrahedron Lett. 2017; 58: 375
- 4m Yerien DE, Barata-Vallejo S, Postigo A. Chem. Eur. J. 2017; 23: 14676
- 4n Song H.-X, Han Q.-Y, Zhao C.-L, Zhang C.-P. Green Chem. 2018; 20: 1662
- 4o Lemos A, Lemaire C, Luxen A. Adv. Synth. Catal. 2019; 361: 1500
- 4p Carbonnel E, Poisson T, Jubault P, Pannecoucke X, Besset T. Front. Chem. 2019; 111
- 4q Pannecoucke X, Besset T. Org. Biomol. Chem. 2019; 17: 1683
- 5 Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
- 6a Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
- 6b Zheng H, Huang Y, Weng Z. Tetrahedron Lett. 2016; 57: 1397
- 6c Barata-Vallejo S, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 7150
- 6d Chachignon H, Cahard D. Chin. J. Chem. 2016; 34: 445
- 6e Zhang C. J. Chem. Sci. 2017; 129: 1795
- 6f Rossi S, Puglisi A, Raimondi L, Benaglia M. ChemCatChem 2018; 10: 2717
- 6g Barthelemy A.-L, Magnier E, Dagousset G. Synthesis 2018; 50: 4765
- 6h Hamzehloo M, Hosseinian A, Ebrahimiasl S, Monfared A, Vessally E. J. Fluorine Chem. 2019; 224: 52
- 6i Monfared A, Ebrahimiasl S, Babazadeh M, Arshadi S, Vessally E. J. Fluorine Chem. 2019; 220: 24
- 6j Lin Y.-M, Jiang L.-Q, Yi W.-B. Asian J. Org. Chem. 2019; 8: 627
- 6k Hopkinson MN. Synthesis of Trifluoromethylthiolated Alkenes and Alkynes. In Emerging Fluorinated Motifs. Cahard D, Ma J.-A. Wiley-VCH; Weinheim: 2020: 373-401
- 6l Liu H, Ge H, Shen Q. Reagents for Direct Trifluoromethylthiolation . In Emerging Fluorinated Motifs . Cahard D, Ma J.-A. Wiley-VCH; Weinheim: 2020: 309-341
- 6m Boiko VN. Beilstein. J. Org. Chem. 2010; 6: 880
- 6n Tlili A, Billard T. Angew. Chem. Int. Ed. 2013; 52: 6818
- 6o Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2415
- 7a Huang Y, He X, Lin X, Rong M, Weng Z. Org. Lett. 2014; 16: 3284
- 7b Lefebvre Q, Fava E, Nikolaienko P, Rueping M. Chem. Commun. 2014; 50: 6617
- 7c Xu C, Ma B, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 9316
- 7d Danoun G, Bayarmagnai B, Gruenberg MF, Goossen LJ. Chem. Sci. 2014; 5: 1312
- 7e Exner B, Bayarmagnai B, Jia F, Goossen LJ. Chem. Eur. J. 2015; 21: 17220
- 7f Zheng J, Wang L, Lin J.-H, Xiao J.-C, Liang SH. Angew. Chem. Int. Ed. 2015; 54: 13236
- 7g Yin G, Kalvet I, Schoenebeck F. Angew. Chem. Int. Ed. 2015; 54: 6809
- 7h Liu J.-B, Xu X.-H, Chen Z.-H, Qing F.-L. Angew. Chem. Int. Ed. 2015; 54: 897
- 7i Yang T, Lu L, Shen Q. Chem. Commun. 2015; 51: 5479
- 7j Yang Y, Xu L, Yu S, Liu X, Zhang Y, Vicic DA. Chem. Eur. J. 2016; 22: 858
- 7k Jarrige L, Carboni A, Dagousset G, Levitre G, Magnier E, Masson G. Org. Lett. 2016; 18: 2906
- 7l Liu X, An R, Zhang X, Luo J, Zhao X. Angew. Chem. Int. Ed. 2016; 55: 5846
- 7m Lübcke M, Yuan W, Szabó KJ. Org. Lett. 2017; 19: 4548
- 7n Dagousset G, Simon C, Anselmi E, Tuccio B, Billard T, Magnier E. Chem. Eur. J. 2017; 23: 4282
- 7o Saravanan P, Anbarasan P. Adv. Synth. Catal. 2018; 360: 2894
- 7p Xi C.-C, Chen Z.-M, Zhang S.-Y, Tu Y.-Q. Org. Lett. 2018; 20: 4227
- 7q Qin T, Jiang Q, Ji J, Luo J, Zhao X. Org. Biomol. Chem. 2019; 17: 1763
- 7r Ouyang Y, Xu X.-H, Qing F.-L. Angew. Chem. Int. Ed. 2019; 58: 18508
- 7s Wang D, Carlton CG, Tayu M, McDouall JJ. W, Perry GJ. P, Procter DJ. Angew. Chem. Int. Ed. 2020; 59: 15918
- 7t Kim JH, Ruffoni A, Al-Faiyz YS. S, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2020; 59: 8225
- 7u Guérin T, Pikun NV, Morioka R, Panossian A, Hanquet G, Leroux FR. Chem. Eur. J. 2020; 26: 14852
- 7v Barday M, Blieck R, Ruyet L, Besset T. Tetrahedron 2020; 76: 131153
- 7w Eitzinger A, Brière J.-F, Cahard D, Waser M. Org. Biomol. Chem. 2020; 18: 405
- 7x Chen J, Li J, Plutschack MB, Berger F, Ritter T. Angew. Chem. Int. Ed. 2020; 59: 5616
- 7y Eitzinger A, Otevrel J, Haider V, Macchia A, Massa A, Faust K, Spingler B, Berkessel A, Waser M. Adv. Synth. Catal. 2021; 363: 1955
- 7z Schirmer TE, Rolka AB, Karl TA, Holzhausen F, König B. Org. Lett. 2021; 23: 5729
- 7aa Jia Y, Qin H, Wang N, Jiang Z.-X, Yang Z. J. Org. Chem. 2018; 83: 2808
- 8 Xu X, Qing F. Indirect Trifluoromethylthiolation Methods . In Emerging Fluorinated Motifs . Cahard D, Ma J.-A. Wiley-VCH; Weinheim: 2020: 289-307
- 9a Nodiff EA, Lipschutz S, Craig PN, Gordon M. J. Org. Chem. 1960; 25: 60
- 9b Kremsner JM, Rack M, Pilger C, Kappe CO. Tetrahedron Lett. 2009; 50: 3665
- 9c Saint-Jalmes L. J. Fluorine Chem. 2006; 127: 85
- 10a Umemoto T, Ishihara S. J. Am. Chem. Soc. 1993; 115: 2156
- 10b Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
- 10c Yamaguchi K, Sakagami K, Miyamoto Y, Jin X, Mizuno N. Org. Biomol. Chem. 2014; 12: 9200
- 10d Brantley JN, Samant AV, Toste FD. ACS Cent. Sci. 2016; 2: 341
- 10e Xu C, Song X, Guo J, Chen S, Gao J, Jiang J, Gao F, Li Y, Wang M. Org. Lett. 2018; 20: 3933
- 10f Hosseinian A, Sadeghi YJ, Ebrahimiasl S, Monfared A, Vessally E. J. Sulfur Chem. 2019; 40: 565
- 11a Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
- 11b Xu C, Shen Q. Org. Lett. 2014; 16: 2046
- 11c Yin W, Wang Z, Huang Y. Adv. Synth. Catal. 2014; 356: 2998
- 11d Shao X, Xu C, Lu L, Shen Q. Acc. Chem. Res. 2015; 48: 1227
- 11e Wang Q, Xie F, Li X. J. Org. Chem. 2015; 80: 8361
- 11f Yoshida M, Kawai K, Tanaka R, Yoshino T, Matsunaga S. Chem. Commun. 2017; 53: 5974
- 11g Liu X.-G, Li Q, Wang H. Adv. Synth. Catal. 2017; 359: 1942
- 11h Zhao Q, Chen M.-Y, Poisson T, Pannecoucke X, Bouillon J.-P, Besset T. Eur. J. Org. Chem. 2018; 6167
- 11i Kesavan A, Chaitanya M, Anbarasan P. Eur. J. Org. Chem. 2018; 3276
- 11j Jardim GA. M, Oliveira WX. C, de Freitas RP, Menna-Barreto RF. S, Silva TL, Goulart MO. F, da Silva Júnior EN. Org. Biomol. Chem. 2018; 16: 1686
- 11k Zheng C, Jiang C, Huang S, Zhao K, Fu Y, Ma M, Hong J. Org. Lett. 2021; 23: 6982
- 11l Yang X.-H, Chang D, Zhao R, Shi L. Asian J. Org. Chem. 2021; 10: 61
- 12a Chen C, Xu X.-H, Yang B, Qing F.-L. Org. Lett. 2014; 16: 3372
- 12b Xiong H.-Y, Besset T, Cahard D, Pannecoucke X. J. Org. Chem. 2015; 80: 4204
- 12c Wu H, Xiao Z, Wu J, Guo Y, Xiao J.-C, Liu C, Chen Q.-Y. Angew. Chem. Int. Ed. 2015; 54: 4070
- 12d Guo S, Zhang X, Tang P. Angew. Chem. Int. Ed. 2015; 54: 4065
- 12e Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F. J. Am. Chem. Soc. 2016; 138: 16200
- 12f Anselmi E, Simon C, Marrot J, Bernardelli P, Schio L, Pégot B, Magnier E. Eur. J. Org. Chem. 2017; 6319
- 12g Gelat F, Poisson T, Biju AT, Pannecoucke X, Besset T. Eur. J. Org. Chem. 2018; 3693
- 12h Xu W, Wang W, Liu T, Xie J, Zhu C. Nat. Commun. 2019; 10: 4867
- 12i Bouchard A, Kairouz V, Manneveau M, Xiong H.-Y, Besset T, Pannecoucke X, Lebel H. J. Flow Chem. 2019; 9: 9
- 13a McGown AT, Fox BW. Cancer Chemother. Pharmacol. 1990; 26: 79
- 13b Fattori V, Hohmann M, Rossaneis A, Pinho-Ribeiro F, Verri W. Molecules 2016; 21: 844
- 14 Scheiblich S, Maier T, Baltruschat H. PCT Int. Appl WO 2001036410A1, 2001
- 15 Hamamoto I, Aoyama H, Sakanishi K, Iwasa T, Kobayashi T. PCT Int. Appl WO 2017104741A1, 2017
- 16a Munavalli S, Rohrbaugh DK, Rossman DI, Durst HD. J. Fluorine Chem. 1999; 98: 3
- 16b Ferry A, Billard T, Langlois BR, Bacqué E. Angew. Chem. Int. Ed. 2009; 48: 8551
- 16c Yang Y.-D, Azuma A, Tokunaga E, Yamasaki M, Shiro M, Shibata N. J. Am. Chem. Soc. 2013; 135: 8782
- 16d Besset T, Poisson T, Pannecoucke X. Eur. J. Org. Chem. 2015; 2765
- 16e Dürr AB, Yin G, Kalvet I, Napoly F, Schoenebeck F. Chem. Sci. 2016; 7: 1076
- 16f Pan S, Huang Y, Xu X.-H, Qing F.-L. Org. Lett. 2017; 19: 4624
- 16g Li H, Liu S, Huang Y, Xu X.-H, Qing F.-L. Chem. Commun. 2017; 53: 10136
- 16h Bu M, Lu G, Cai C. Org. Chem. Front. 2017; 4: 266
- 16i Zhao Q, Poisson T, Pannecoucke X, Bouillon J.-P, Besset T. Org. Lett. 2017; 19: 5106
- 16j Chen M, Wei Y, Shi M. Org. Chem. Front. 2018; 5: 2030
- 16k Ji M, Yu J, Zhu C. Chem. Commun. 2018; 54: 6812
- 16l Jiang L, Yan Q, Wang R, Ding T, Yi W, Zhang W. Chem. Eur. J. 2018; 24: 18749
- 16m Li J, Yang Z, Guo R, Jin MY, Wang J. Asian J. Org. Chem. 2018; 7: 1784
- 16n Liu Y.-L, Xu X.-H, Qing F.-L. Tetrahedron 2018; 74: 5827
- 17 Zhang C.-P, Vicic DA. Chem. Asian J. 2012; 7: 1756
- 18 Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457 ; Note that the electrophilic source II was obtained starting from 1-chloro-3,3-dimethylbenziodoxole and AgSCF3 in 51% yield
- 19 Vinogradova EV, Müller P, Buchwald SL. Angew. Chem. Int. Ed. 2014; 53: 3125
- 20 Arimori S, Takada M, Shibata N. Dalton Trans. 2015; 19456
- 21 Munavalli S, Rohrbaugh DK, Rossman DI, Berg FJ, Wagner GW, Durst HD. Synth. Commun. 2000; 30: 2847
- 22 Pluta R, Nikolaienko P, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 1650 ; The reagent IV was easily prepared using a N-chlorophthalimide and CuSCF3
- 23 Kang K, Xu C, Shen Q. Org. Chem. Front. 2014; 1: 294 ; The reagent IV was easily prepared using a N-bromophthalimide and AgSCF3
- 24 Glenadel Q, Alazet S, Tlili A, Billard T. Chem. Eur. J. 2015; 21: 14694
- 25 Yang X.-G, Zheng K, Zhang C. Org. Lett. 2020; 22: 2026
- 26 Pan S, Huang Y, Qing F.-L. Chem. Asian J. 2016; 11: 2854
- 27 Cheng Z.-F, Tao T.-T, Feng Y.-S, Tang W.-K, Xu J, Dai J.-J, Xu H.-J. J. Org. Chem. 2018; 83: 499
- 28 Haas A, Krachter H.-U. Chem. Ber. 1988; 121: 1833
- 29 Rueping M, Tolstoluzhsky N, Nikolaienko P. Chem. Eur. J. 2013; 19: 14043
- 30a Huang Y, Ding J, Wu C, Zheng H, Weng Z. J. Org. Chem. 2015; 80: 2912
- 30b Complex X was synthesized from CuF2, 2,2′-biyridine, in the presence of the Ruppert–Prakash reagent and elemental sulfur, see references 6b and 6l.
- 31 Zheng C, Huang S, Liu Y, Jiang C, Zhang W, Fang G, Hong J. Org. Lett. 2020; 22: 4868
- 32 Honeker R, Garza-Sanchez RA, Hopkinson MN, Glorius F. Chem. Eur. J. 2016; 22: 4395
- 33 Zhang P, Li M, Xue X.-S, Xu C, Zhao Q, Liu Y, Wang H, Guo Y, Lu L, Shen Q. J. Org. Chem. 2016; 81: 7486
- 34 Basavaiah D, Naganaboina RT. New J. Chem. 2018; 42: 14036
- 35 Yoo J, Ha H.-J, Kim B, Cho C.-W. J. Org. Chem. 2020; 85: 7077
- 36 Wu W, Dai W, Ji X, Cao S. Org. Lett. 2016; 18: 2918
- 37 Liao L, An R, Li H, Xu Y, Wu J.-J, Zhao X. Angew. Chem. Int. Ed. 2020; 59: 11010 ; the reagent XIII was generated from N-halosaccharin and AgSCF3, see references 6d and 6l
- 38 Chen H.-T, Huang Y, Qing F.-L, Xu X.-H. Tetrahedron Lett. 2020; 61: 151628
For selected examples, see:
For selected reviews, see:
For selected reviews, see:
For selected examples, see:
Note that methodologies to access tri- and tetrasubstituted alkenes are out of the scope of this Short Review. For selected examples, see: