Synthesis 2022; 54(08): 1951-1963
DOI: 10.1055/s-0040-1719893
short review

Current Advances in Meerwein-type Radical Alkene Functionalizations

Nina Diesendorf
,
The authors are grateful for the support of their research work by the Deutsche Forschungsgemeinschaft (DFG, HE 5413/9-4).


Abstract

Alkene functionalizations via Meerwein arylations are becoming increasingly attractive, especially since a variety of mild and sustainable methods for aryl radical generation are available today. This entails a broad spectrum of substrates and radical scavengers, as well as convenient synthetic routes to relevant precursors for further transformations. The present review focuses on recent advances in Meerwein-type alkene functionalizations and gives insights into the key mechanistic details of the respective reactions.

1 Introduction

2 Hydroarylation and Carboarylation

3 Carboamination, Carbooxygenation, and Carbothiolation

4 Carbohalogenation

5 Conclusion and Outlook



Publication History

Received: 08 November 2021

Accepted after revision: 08 December 2021

Article published online:
02 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Meerwein H, Büchner E, van Emster K. J. Prakt. Chem. 1939; 152: 237
    • 2a Citterio A, Minisci F, Vismara E. J. Org. Chem. 1982; 47: 81
    • 2b Kindt S, Heinrich MR. Chem. Eur. J. 2014; 20: 15344
  • 3 Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
  • 4 Bell JD, Murphy JA. Chem. Soc. Rev. 2021; 50: 9540
  • 5 Galli C. Chem. Rev. 1988; 88: 765
  • 6 Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
  • 7 Sharma S, Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 3146
  • 8 Mo F, Qiu D, Zhang L, Wang J. Chem. Rev. 2021; 121: 5741
  • 9 For a recent ionic version, see acid-catalyzed hydroarylation: Colomer I. ACS Catal. 2020; 10: 6023
    • 10a Iwata Y, Tanaka Y, Kubosaki S, Yoshimi Y. Chem. Commun. 2018; 54: 1257
    • 10b Kubosaki S, Takeuchi H, Iwata Y, Tanaka Y, Osaka K, Yamawaki M, Morita T, Yoshimi Y. J. Org. Chem. 2020; 85: 5362
  • 11 Dickschat A, Studer A. Org. Lett. 2010; 12: 3972
  • 12 Citterio A. Org. Synth. 1984; 62: 67
    • 13a Seath CP, Vogt DB, Xu Z, Boyington AJ, Jui NT. J. Am. Chem. Soc. 2018; 140: 15525
    • 13b Badir SO, Lipp A, Krumb M, Cabrera-Afonso MJ, Kammer LM, Wu VE, Huang M, Csakai A, Marcaurel LA, Molander GA. Chem. Sci. 2021; 12: 12036
  • 14 Obushak ND, Ganushchack VS, Matiichuk VS. Russ. J. Org. Chem. 1996; 32: 766
  • 15 Parsaee F, Senarathna MC, Kannangara PB, Alexander SN, Arche PD. E, Welin ER. Nat. Rev. Chem. 2021; 5: 486
  • 16 For a recent example featuring Hantzsch ester initiation, see: Tatunashvili E, Chan B, Nashar PE, McErlean CS. P. Org. Biomol. Chem. 2020; 18: 1812
  • 17 Gonda Z, Béke F, Tischler O, Petró M, Novák Z, Tóth BL. Eur. J. Org. Chem. 2017; 2017: 2112
  • 18 Ni Z, Huang X, Pan Y. Org. Lett. 2016; 18: 2612
  • 19 Doyle MP, Siegfried B, Elliot RC, Dellaria JF. Jr. J. Org. Chem. 1977; 42: 2431
  • 20 For a related trifluoromethylation reaction, see: Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
  • 21 Yuan L, Jiang S.-M, Li Z.-Z, Zhu Y, Yu J, Li L, Li M.-Z, Tang S, Sheng R.-R. Org. Biomol. Chem. 2018; 16: 2406
  • 22 Altmann L.-M, Zantop V, Wenisch P, Diesendorf N, Heinrich MR. Chem. Eur. J. 2021; 27: 2452
    • 23a Ouyang X.-H, Song R.-J, Li Y, Liu B, Li J.-H. J. Org. Chem. 2014; 79: 4582
    • 23b Wei W.-T, Song R.-J, Ouyang X.-H, Li Y, Li H.-B, Li J.-H. Org. Chem. Front. 2014; 1: 484
  • 24 Branchi B, Galli C, Gentili P. Eur. J. Org. Chem. 2002; 2002: 2844
  • 25 For related reactions, see: Jasch H, Landais Y, Heinrich MR. Chem. Eur. J. 2013; 19: 8411
  • 26 Hegmann N, Prusko L, Heinrich MR. Org. Lett. 2017; 19: 2222
  • 27 An Y, Zhang J, Yia H, Wu J. Org. Chem. Front. 2017; 4: 1318
  • 28 Zheng D, Yu J, Wu J. Angew. Chem. Int. Ed. 2016; 55: 11925
  • 29 Zhu Y.-L, Jiang B, Hao W.-J, Qui J.-K, Sun J, Wang D.-C, Wei P, Wang A.-F, Li Q, Tu S.-J. Org. Lett. 2015; 17: 6078
  • 30 Ouyang X.-H, Cheng J, Li J.-H. Chem. Commun. 2018; 54: 8745
    • 31a Scaiano C, Stewart LC. J. Am. Chem. Soc. 1983; 105: 3609
    • 31b Garden SJ, Avila DV, Beckwith AL. J, Bowry VW, Ingold KU, Lusztyk J. J. Org. Chem. 1996; 61: 805
    • 31c Blank O, Wetzel A, Ullrich D, Heinrich MR. Eur. J. Org. Chem. 2008; 2008: 3179
  • 32 Brunner H, Blüchel C, Doyle MP. J. Organomet. Chem. 1997; 541: 89
  • 33 Zhuang W, Chen P, Liu G. Chin. J. Chem. 2021; 39: 50
  • 34 For a related trifluoromethylation, see: Wang F, Wang D, Wan X, Wu L, Chen P, Liu G. J. Am. Chem. Soc. 2016; 138: 15547
  • 35 Wang H, Gao Y, Zhou C, Li G. J. Am. Chem. Soc. 2020; 142: 8122
    • 36a Citterio A, Minisci F, Albinati A, Bruckner S. Tetrahedron Lett. 1980; 21: 2909
    • 36b Heinrich MR, Blank O, Wölfel S. Org. Lett. 2006; 8: 3323
    • 36c Heinrich MR, Blank O, Wetzel A. J. Org. Chem. 2007; 72: 476
    • 36d Kindt S, Wicht K, Heinrich MR. Org. Lett. 2015; 17: 6122
    • 37a de Salas C, Blank O, Heinrich MR. Chem. Eur. J. 2011; 17: 9306
    • 37b Höfling SB, Heinrich MR. Synthesis 2011; 173
    • 37c de Salas C, Heinrich MR. Green Chem. 2014; 16: 2982
  • 38 Abdelwahab AB, El-Sawy ER, Kirsch G. Synth. Commun. 2020; 50: 526
  • 39 Hari DP, Hering T, König B. Angew. Chem. Int. Ed. 2014; 53: 725
  • 40 Xu R, Drake T, Lan G, Lin G. Chem. Eur. J. 2018; 24: 15772
  • 41 Cao L, Lin Z, Peng F, Wang W, Huang R, Wang C, Yan J, Liang J, Zhang Z, Zhang T, Long L, Sun J, Lin W. Angew. Chem. Int. Ed. 2016; 55: 4962
  • 42 Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science 2013; 341: 1230444-1
  • 43 Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt AA, Snurr RQ, Hupp JT, Farha OK. Chem. Commun. 2013; 49: 9449
  • 44 Gosset C, Moncomble A, Dumont C, Pellegrini S, Bosquet T, Sauthier M, Pélinski L. Adv. Synth. Catal. 2020; 362: 3100
  • 45 Ganushchak NI, Grishchuk BD, Dombrovskii AV. Zh. Org. Khim. 1973; 9: 1030
    • 46a Heinrich MR, Wetzel A, Kirschstein M. Org. Lett. 2007; 9: 3833
    • 46b Hartmann M, Li Y, Studer A. J. Am. Chem. Soc. 2012; 134: 16516
  • 47 Taniguchi T, Zaimoku H, Ishibashi H. Chem. Eur. J. 2011; 17: 4307
  • 48 Kindt S, Wicht K, Heinrich MR. Angew. Chem. Int. Ed. 2016; 55: 8744
  • 49 Zhu R, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
    • 50a Gao Y, Xu J, Zhang P, Fang H, Tang GM, Zhao Y. RSC Adv. 2015; 5: 36167
    • 50b Bush JB. Jr, Finkbeiner H. J. Am. Chem. Soc. 1968; 90: 5903
    • 50c Heiba EI, Dessau RM, Koehl WJ. Jr. J. Am. Chem. Soc. 1968; 90: 5905
    • 50d Huynh T.-T, Yamakawa H, Ngyen V.-H, Nishino H. ChemistrySelect 2018; 3: 6414
    • 50e Chuang C.-P, Chen Y.-J. Tetrahedron 2016; 72: 1911
  • 51 Dong B, Peng H, Motika SE, Shi X. Chem. Eur. J. 2017; 23: 11093
  • 52 Mkrtchyan S, Iaroshenko VO. Chem. Commun. 2020; 56: 2606
  • 53 Molinaro C, Mowat J, Gosselin F, O’Shea PD, Marcoux J.-F, Angelaud R, Davies IW. J. Org. Chem. 2007; 72: 1856
    • 54a Gomberg M, Bachmann WE. J. Am. Chem. Soc. 1924; 46: 2339
    • 54b Rüchardt C, Merz E. Tetrahedron Lett. 1964; 5: 2431
    • 54c Pratsch G, Wallaschkowski T, Heinrich MR. Chem. Eur. J. 2012; 18: 11555
  • 55 Ek F, Axelsson O, Wistrand L.-G, Frejd T. J. Org. Chem. 2002; 67: 676
  • 56 For related reactions under photocatalysis, see: Crespi S, Jäger S, König B, Fagnoni M. Eur. J. Org. Chem. 2017; 2017: 2147
  • 57 Scarpa de Souza EL, Wiethan C, Correia CR. D. ACS Omega 2019; 4: 18918
  • 58 Wang J, Xue L, Hong M, Ni B, Niu T. Green Chem. 2020; 22: 411
  • 59 Govindarajan R, Ahmed J, Swain AK, Mandal SK. J. Org. Chem. 2019; 84: 13490
  • 60 Yamaguchi E, Tanaka W, Itoh A. Chem. Asian J. 2019; 14: 121
  • 62 Khan RK. M, Zhao Y, Scully TD, Buchwald SL. Chem. Eur. J. 2018; 24: 15215
  • 63 Yamaguchi E, Taguchi N, Itoh A. React. Chem. Eng. 2019; 4: 995
    • 64a Gorbovoi PM, Kudrik EY, Grishchuk BD. Russ. J. Gen. Chem. 1998; 68: 1132
    • 64b Grishchuk BD, Kudrik EY, Gorbovoi PM, Ganushchak NI. Russ. J. Gen. Chem. 1996; 66: 1482
    • 64c Gorbovoi PM, Tulaidan GN, Grishchuk GN. Russ. J. Gen. Chem. 2008; 78: 133
    • 64d Baranovskii VS, Petrushka BM, Fesak AY, Grishchuk BD. Russ. J. Gen. Chem. 2013; 83: 325
    • 64e Hari DP, Hering T, König B. Org. Lett. 2012; 14: 5334
  • 65 Heinrich MR. Chem. Eur. J. 2009; 15: 820
  • 66 Hoque IU, Chowdhury SR, Maity S. J. Org. Chem. 2019; 84: 3025
    • 67a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 67b Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 10146
  • 68 Wang J, Sánchez-Roselló M, Aceña JL, de Pozo C, Sorochinsky AE, Fustero S, Solosonol VA, Liu H. Chem. Rev. 2014; 114: 2432
  • 69 Xiao Z, Liu Y, Zheng L, Liu C, Guo Y, Chen Q.-Y. J. Org. Chem. 2018; 83: 5836
    • 70a Jenkins CL, Kochi JK. J. Org. Chem. 1971; 36: 3103
    • 70b Jenkins CL, Kochi JK. J. Am. Chem. Soc. 1972; 94: 856
    • 70c Dombrovskii AV, Yurkevich AM, Terentev AP. Zh. Obshch. Khim. 1957; 27: 3077
    • 70d Dombrovskii AV, Ganushchak NI. Zh. Obshch. Khim. 1961; 31: 1191
    • 70e Gansuhchak NI, Obushak ND, Polishchuk OP. Zh. Org. Khim. 1986; 22: 2291
  • 71 Pirzer AS, Alvarez E.-M, Friedrich H, Heinrich MR. Chem. Eur. J. 2019; 25: 2786
  • 72 Leung JC. T, Chatalova-Sazepin C, West JG, Rueda-Becerril M, Paquin JF, Sammis GM. Angew. Chem. Int. Ed. 2012; 51: 10804
  • 73 Gao D.-W, Vinogradova EV, Nimmagadda SK, Medina JM, Xiao Y, Suciu RM, Cravatt BF, Engle KM. J. Am. Chem. Soc. 2018; 140: 8069
  • 74 Tang H.-J, Zhang B, Yue F, Feng C. Org. Lett. 2021; 23: 4040
  • 75 For earlier examples, see: Pokhodylo NT, Savka RD, Obushak MD. Russ. J. Org. Chem. 2017; 53: 734
  • 76 Batsyts S, Shehedyn M, Goreshnik EA, Obushak MD, Schmidt A, Ostapiuk Y. Eur. J. Org. Chem. 2019; 2019: 7842
  • 77 Galli C. J. Chem. Soc., Perkin Trans. 2 1981; 1459