Synthesis 2024; 56(13): 2015-2024
DOI: 10.1055/s-0040-1720121
paper

Recyclable Palladium-Catalyzed Carbonylative Coupling of Aryl Halides and Organoaluminum Compounds with tert-Butyl Iso­cyanide as CO Equivalent Leading to 1,2-Diketones

Zhiyuan Tu
a   Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
,
Jianan Zhan
a   Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
,
Shengyong You
b   Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330029, P. R. of China
,
Mingzhong Cai
a   Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (No. 21664008) and Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education (No. KFSEMC-202206) and Key Project of Basic Research of Jiangxi Academy of Sciences for financial support.


Abstract

An efficient heterogeneous palladium-catalyzed carbonylative coupling of aryl halides and organoaluminum compounds has been developed using tert-butyl isocyanide as CO equivalent. The carbonylation reaction proceeds smoothly in toluene with KOtBu as a base at 100 °C by using 10 mol% of an SBA-15-anchored bidentate phosphine palladium(0) complex [2P-SBA-15-Pd(0)] as the catalyst and provides a general and practical approach for the assembly of 1,2-diketones in good to excellent yields. This heterogenized palladium catalyst can be readily separated and recovered via a simple centrifugation process and reused for more than seven cycles with almost consistent catalytic efficiency.

Supporting Information



Publication History

Received: 13 April 2024

Accepted after revision: 21 May 2024

Article published online:
03 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Fan T.-Y, Wu W.-Y, Yu S.-P, Zhong Y, Zhao C, Chen M, Li H.-M, Li N.-G, Chen Z, Chen S, Sun Z.-H, Duan J.-A, Shi Z.-H. Bioorg. Med. Chem. Lett. 2019; 29: 126772
    • 1b Kucukkilinc TT, Yanghagh KS, Ayazgok B, Roknipour MA, Moghadam FH, Moradi A, Emami S, Amini M, Irannejad H. Med. Chem. Res. 2017; 26: 3057
    • 1c Cumming JN, Smith EM, Wang L, Misiaszek J, Durkin J, Pan J, Iserloh U, Wu Y, Zhu Z, Strickland C, Voigt J, Chen X, Kennedy ME, Kuvelkar R, Hyde LA, Cox K, Favreau L, Czarniecki MF, Greenlee WJ, McKittrick BA, Parker EM, Stamford AW. Bioorg. Med. Chem. Lett. 2012; 22: 2444
    • 1d Al-kahraman YM. S. A, Yasinzai M, Singh GS. Arch. Pharmacal. Res. 2012; 35: 1009
    • 2a Yan Q, Ma X, Banwell MG, Ward JS. J. Nat. Prod. 2017; 80: 3305
    • 2b Luan Y, Wei H, Zhang Z, Che Q, Liu Y, Zhu T, Mandi A, Kurtan T, Gu Q, Li D. J. Nat. Prod. 2014; 77: 1718
    • 2c Shen Y, Feng Z.-M, Jiang J.-S, Yang Y.-N, Zhang P.-C. J. Nat. Prod. 2013; 76: 2337
    • 3a Mousset C, Giraud A, Provot O, Hamze A, Bignon J, Liu J.-M, Thoret S, Dubois J, Brion J.-D, Alami M. Bioorg. Med. Chem. Lett. 2008; 18: 3266
    • 3b Ganapaty S, Srilakshmi GV. K, Pannakal ST, Rahman H, Laatsch H, Brun R. Phytochemistry 2009; 70: 95
    • 4a Hernandez-Cruz O, Zolotukhin MG, Fomine S, Alexandrova L, Aguilar-Lugo C, Ruiz-Trevino FA, Ramos-Ortiz G, Maldonado JL, Cadenas-Pliego G. Macromolecules 2015; 48: 1026
    • 4b Mosnacek J, Weiss RG, Lukac I. Macromolecules 2002; 35: 3870
    • 4c Huang S, Gao T, Bi A, Cao X, Feng B, Liu M, Du T, Feng X, Zeng W. Dyes Pigm. 2020; 172: 107830
    • 4d Kawai S, Yamaguchi T, Kato T, Hatano S, Abe J. Dyes Pigm. 2012; 92: 872
    • 5a Erker G, Czisch P, Schlund R, Angermund K, Kruger C. Angew. Chem., Int. Ed. Engl. 1986; 25: 364
    • 5b Hofmann P, Frede M, Stauffert P, Lasser W, Thewalt U. Angew. Chem., Int. Ed. Engl. 1985; 24: 712
    • 5c Spikes GH, Sproules S, Bill E, Weyhermuller T, Wieghardt K. Inorg. Chem. 2008; 47: 10935
    • 5d van Vezen NJ. C, Harder S. Organometallics 2018; 37: 2263
    • 5e Cesari C, Sambri I, Zacchini S, Zanotti V, Mazzoni R. Organometallics 2014; 33: 2814
    • 6a Wang G, Wang J, He D, Li X, Li J, Peng Z. Bioorg. Med. Chem. Lett. 2016; 26: 2806
    • 6b Scott JD, Li SW, Brunskill AP. J, Chen X, Cox K, Cumming JN, Forman M, Gilbert EJ, Hodgson RA, Hyde LA, Jiang Q, Iserloh U, Kazakevich I, Kuvelkar R, Mei H, Meredith J, Misiaszek J, Orth P, Rossiter LM, Slater M, Stone J, Strickland CO, Voigt JH, Wang G, Wang H, Wu Y, Greenlee WJ, Parker EM, Kennedy ME, Stamford AW. J. Med. Chem. 2016; 59: 10435
    • 6c Hicks LD, Hyatt JL, Moak T, Edwards CC, Tsurkan L, Wierdl M, Ferreira AM, Wadkins RM, Potter PM. Bioorg. Med. Chem. 2007; 15: 3801
    • 7a McKenna JM, Halley F, Souness JE, McLay IM, Pickett SD, Collis AJ, Page K, Ahmed I. J. Med. Chem. 2002; 45: 2173
    • 7b Deng X, Mani NS. Org. Lett. 2006; 8: 269
    • 7c Wolkenberg SE, Wisnoski DD, Leister WH, Wang Y, Zhao Z, Lindsley CW. Org. Lett. 2004; 6: 1453
    • 7d Zhao Z, Wisnoski DD, Wolkenberg SE, Leister WH, Wang Y, Lindsley CW. Tetrahedron Lett. 2004; 45: 4873
    • 7e Schmitt DC, Lam L, Johnson JS. Org. Lett. 2011; 13: 5136
    • 8a Lee JC, Park H.-J, Park JY. Tetrahedron Lett. 2002; 43: 5661
    • 8b Qi C, Jiang H, Huang L, Chen Z, Chen H. Synthesis 2011; 387
    • 8c Su Y, Zhang L, Jiao N. Org. Lett. 2011; 13: 2168
    • 8d Urgoitia G, SanMartin R, Herrero MT, Dominguez E. Green Chem. 2011; 13: 2161
    • 8e Chang HS, Woo JC, Lee KM, Ko YK, Moon S.-S, Kim D.-W. Synth. Commun. 2002; 32: 31
    • 8f Chen C.-T, Kao J.-Q, Salunke SB, Lin Y.-H. Org. Lett. 2011; 13: 26
    • 8g Chebolu R, Bahuguna A, Sharma R, Mishra VK, Ravikumar PC. Chem. Commun. 2015; 51: 15438
    • 9a Wang Z, Jiang H, Li X. J. Org. Chem. 2011; 76: 6958
    • 9b Chen S, Liu Z, Shi E, Chen L, Wei W, Li H, Cheng Y, Wan X. Org. Lett. 2011; 13: 2274
    • 9c Schmidt B, Krehl S, Hauke S. J. Org. Chem. 2013; 78: 5427
    • 9d Su X, Sun X, Wu G, Jiao N. Angew. Chem. Int. Ed. 2013; 52: 9808
    • 9e Song T, Ma Z, Ren P, Yuan Y, Xiao J, Yang Y. ACS Catal. 2020; 10: 4617
    • 10a Gao A, Yang F, Li J, Wu Y. Tetrahedron 2012; 68: 4950
    • 10b Xu YWan X. Tetrahedron Lett. 2013; 54: 642
    • 10c Sawama Y, Takubo M, Mori S, Monguchi Y, Sajiki H. Eur. J. Org. Chem. 2011; 3361
    • 10d Zhou J, Tao X.-Z, Dai J.-J, Li C.-G, Xu J, Xu H.-M, Xu H.-J. Chem. Commun. 2019; 55: 9208
    • 10e Ynag W, Chen Y, Yao Y, Yang X, Lin Q, Yang D. J. Org. Chem. 2019; 84: 11080
    • 10f Kim SW, Um T.-W, Shin S. J. Org. Chem. 2018; 83: 4703
    • 10g Yuan L.-Z, Hamze A, Alami M, Provot O. Synthesis 2017; 49: 504
    • 10h Xu C.-F, Xu M, Jia Y.-X, Li C.-Y. Org. Lett. 2011; 13: 1556
    • 10i Dubovtsev AY, Shchebakov NV, Dar’in DV, Kukushkin VY. J. Org. Chem. 2020; 85: 745
    • 10j Zhu X, Li P, Shi Q, Wang L. Green Chem. 2016; 18: 6373
    • 10k Shen D, Wang H, Zheng Y, Zhu X, Gong P, Wang B, You J, Zhao Y, Chao M. J. Org. Chem. 2021; 86: 5354
  • 11 Lv W.-X, Zeng Y.-F, Zhang S.-S, Li Q.-J, Wang H.-G. Org. Lett. 2015; 17: 2972
    • 12a Min H, Palani T, Park K, Hwang J, Lee S. J. Org. Chem. 2014; 79: 6279
    • 12b Chand S, Pandey AK, Singh R, Singh KN. J. Org. Chem. 2021; 86: 6486
    • 13a Brennfuhrer H, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 13b Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 13c Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 13d Wu X.-F, Neumann H, Beller M. ChemSusChem 2013; 6: 229
    • 14a Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 14b Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY. Chem. Rev. 2015; 115: 2698
    • 14c Wu L, Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6310
    • 14d Gautam P, Bhanage BM. Catal. Sci. Technol. 2015; 5: 4663
    • 15a Tang T, Fei X.-D, Ge Z.-Y, Chen Z, Zhu Y.-M, Ji S.-J. J. Org. Chem. 2013; 78: 3170
    • 15b Jiang X, Wang J.-M, Zhang Y, Chen Z, Zhu Y.-M, Ji S.-J. Org. Lett. 2014; 16: 3492
    • 15c Zhang Y, Jiang X, Wang JM, Chen JL, Zhu YM. RSC Adv. 2015; 5: 17060
    • 15d Chen ZB, Liu K, Zhang F.-L, Yuan Q, Zhu YM. Org. Biomol. Chem. 2017; 15: 8078
    • 15e Jiang H, Liu B, Li Y, Wang A, Huang H. Org. Lett. 2011; 13: 1028
    • 15f Zhu F, Li Y, Wang Z, Orru RV. A, Maes BU. W, Wu X.-F. Chem. Eur. J. 2016; 22: 7743
    • 16a Ren S, Huang K, Liu J.-B, Zhang L, Hou M, Qiu G. Chin. Chem. Lett. 2022; 33: 4870
    • 16b Chen D, Li J, Wang X, Shan Y, Huang K, Yan X, Qiu G. Org. Chem. Front. 2022; 9: 4209
  • 17 Dechert-Schmitt A.-M, Garnsey MR, Wisniewska HM, Murray JI, Lee T, Kung DW, Sach N, Blackmond DG. ACS Catal. 2019; 9: 4508
  • 18 Chen B, Wu X.-F. Org. Lett. 2020; 22: 636
    • 19a Iwasawa Y. Tailored Metal Catalysts 1986
    • 19b Dusi M, Mallat T, Baiker A. Catal. Rev.: Sci. Eng. 2000; 42: 213
    • 19c Phan NT. S, Sluys MV. D, Jones CW. Adv. Synth. Catal. 2006; 348: 609
    • 19d Gladysz JA. In Recoverable and Recyclable Catalysts . Benaglia M. John Wiley and Sons; Chichester: 2009: 1-14
    • 19e Macquarrie D. In Heterogenized Homogeneous Catalysts for Fine Chemicals Production . Barbaro P, Liguori F. Springer; Berlin: 2010: 1-35
    • 21a Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Science 1998; 279: 548
    • 21b Friedrich H, Sietsma JR. A, de Jongh PE, Verkleij AJ, de Jong KP. J. Am. Chem. Soc. 2007; 129: 10249
  • 22 Baltes M, Cassiers K, Van Der Voort P, Weckhuysen BM, Schoonheydt RA, Vansant EF. J. Catal. 2001; 197: 160
    • 23a Wu F, Feng Y, Jones CW. ACS Catal. 2014; 4: 1365
    • 23b Rohani S, Ziarani GM, Badiei A, Ziarati A, Jafari M, Shayyesteh A. Appl. Organomet. Chem. 2018; 32: e4397
    • 23c Nouri K, Hajjami M, Azadi G. Catal. Lett. 2018; 148: 671
    • 23d Lai YT, Chen TC, Lan YK, Chen BS, You JH, Yang CM, Lai NC, Wu JH, Chen CS. ACS Catal. 2014; 4: 3824
    • 23e Yang Y, Rioux RM. Chem. Commun. 2011; 47: 6557
    • 23f Huo Y, Hu J, Lin S, Ju X, Wei Y, Huang Z, Hu Y, Tu Y. Appl. Organomet. Chem. 2019; 33: e4874
    • 23g Zhao J, Yuan H, Qin X, Tian K, Liu Y, Wei C, Zhang Z, Zhou L, Fang S. Catal. Lett. 2020; 150: 2841
    • 23h Chen CS, Lai YT, Lai TW, Wu JH, Chen CH, Lee JF, Kao HM. ACS Catal. 2013; 3: 667
    • 24a Cai M, Peng J, Hao W, Ding G. Green Chem. 2011; 13: 190
    • 24b Hao W, Liu H, Yin L, Cai M. J. Org. Chem. 2016; 81: 4244
    • 24c You S, Xiao R, Liu H, Cai M. New J. Chem. 2017; 41: 13862
    • 24d Hao W, Xu Z, Zhou Z, Cai M. J. Org. Chem. 2020; 85: 8522
    • 24e Xu Z, Huang B, Zhou Z, Cai M. Synthesis 2020; 52: 581
    • 24f Zhou Y, Zhou Z, Liu S, Cai M. Mol. Catal. 2022; 526: 112404
  • 25 Lempers HE. B, Sheldon RA. J. Catal. 1998; 175: 62
  • 26 Wang A, Jiang H, Li X. J. Org. Chem. 2011; 76: 6958
  • 27 Schuttler C, Li-Bohmer Z, Harms K, von Zezschwitz P. Org. Lett. 2013; 15: 800
  • 28 Liu Y, Yun X, Zhang-Negrerie D, Huang J, Du Y, Zhang K. Synthesis 2011; 2984
  • 29 Wehrle RJ, Rosen A, Nguyen TV, Koons K, Jump E, Bullard M, Wehrle N, Stockfish A, Hare PM, Atesin A, Atesin TA, Ma L. ACS Omega 2022; 7: 26650
  • 30 Zeng J, Li J, Huang B, Li J, Cai M. J. Organomet. Chem. 2022; 976: 122435