Subscribe to RSS

DOI: 10.1055/s-0040-1720126
Exploring Porphyrins, Phthalocyanines and Corroles as Photocatalysts for Organic Transformations
Abstract
In recent years, macrocycles have emerged as efficient and sustainable photosensitizers for the catalysis of organic transformations. This graphical review provides a concise overview of photocatalysis and photoredox catalysis utilizing three common macrocycles: porphyrins, phthalocyanines and corroles. They exhibit strong absorption in the visible region and can be easily oxidized or reduced, making them good candidates for photocatalysis.
#
Biographical Sketches


Ashmita Jain received her M.Sc. in chemistry from Jamia Millia Islamia, India. In 2021, she began her Ph.D. research at the Indian Institute of Technology Gandhinagar, India with Dr. Iti Gupta. Her research is focused on photocatalytic transformations of organic compounds utilizing macrocycles such as corroles and their metal complexes.


Iti Gupta obtained her Ph.D. in chemistry from the Indian Institute of Technology Bombay, India. She received a JSPS Fellowship from Japan and undertook postdoctoral research at Kyushu University, where she worked on expanded porphyrins. Subsequently, she joined the Chemistry Faculty at BITS Pilani, K K Birla Goa Campus (2007–2009), before moving to the Indian Institute of Technology Gandhinagar in July 2009, where she is currently an associate professor. She is a member of the Society of Porphyrins & Phthalocyanines, and is also a life-member of the Chemical Research Society of India. Her current research interests are focused on the applications of porphyrins, corroles and metal dipyrrinato complexes in photocatalysis and the photodynamic therapy of cancer.
Photocatalysis offers the advantage of using light as an affordable, sustainable and green source of energy to carry out endergonic reactions.[1] It offers the advantage of milder conditions over those of thermal reactions.[2] As visible light is absorbed by sensitizers but not by most organic compounds, it offers an efficient approach to prevent product degradation and side reactions.[3] In photoredox catalysis, the photocatalyst in its excited state differs from that of the ground state by providing a higher electron affinity and a lower ionization potential, thereby making it a better electron donor as well as an acceptor. Versatile applications of photocatalysts are found in CO2 reduction, H2O splitting, proton-coupled electron transfer, photovoltaics and in the development of photo-electrochemical solar cells.[4]
The formation of carbon–carbon and carbon–heteroatom bonds has been a challenge in organic chemistry, which has been efficiently tackled by photocatalysis.[5] Traditionally, metal complexes (such as Ru and Ir polypyridyl complexes) and organic dyes (such as eosin Y) have been employed extensively as photocatalysts.[6] However, the high cost and toxic nature of metal complexes, as well as the pH-sensitive nature of organic dyes have prompted researchers to explore macrocycles such as porphyrins, phthalocyanines and corroles for photocatalysis.[7] These macrocycles have been examined for the catalysis of cyclopropanations, hydroxylations, aziridinations, epoxidations, sulfoxidations, etc.[8] [9] [10] Typically in photoredox catalysis, under light irradiation, these photocatalysts may undergo oxidation or reduction at different potentials and participate in SET (single-electron transfer) with the substrates. In photooxidation reactions, upon photoexcitation, such catalysts can switch from singlet to triplet excited states via ISC (intersystem crossing), and during this process, they can generate singlet oxygen via the type II pathway. Their ability to participate in SET depends on the reaction conditions, the nature of the substrate and also on the types of meso-substituents (electron-donating or electron-withdrawing) present on the catalyst, which in turn will govern their efficiency.
This graphical review provides an overview of organic transformations photocatalyzed by porphyrins, phthalocyanines and corroles, along with selected substrate scopes, that have been reported over the last five years (2019 to 2023). As photocatalysis by corroles is relatively less explored, all the examples described since 2005 are included. This graphical review describes photooxidations, epoxidations, sulfoxidations, aziridinations and cyanations of aliphatic and/or aromatic compounds by employing these macrocycles. In addition, C–H arylations of heteroarenes and thiocyanations utilizing porphyrins are discussed. Researchers have also explored hydroxylations, cycloadditions, perfluoroalkylations and phosphonylations by employing phthalocyanines as photocatalysts. Examples of brominations mediated by corroles are also provided. However, reactions involving inorganic transformations, polymerization, photodegradation and heterogenous catalysis are excluded.
























#
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
A.J. is grateful to the Indian Institute of Technology Gandhinagar for infrastructural support.
-
References
- 1 Majek M, Wangelin AJ. Acc. Chem. Res. 2016; 49: 2316
- 2 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 3 Pitre SP, McTiernan CD, Scaiano JC. Acc. Chem. Res. 2016; 49: 1320
- 4a Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
- 4b Takeda H, Ishitani O. Coord. Chem. Rev. 2010; 254: 346
- 4c Gratzel M. Acc. Chem. Res. 1981; 14: 376
- 4d Kalyanasundaram K, Gratzel M. Chem. Rev. 1998; 77: 347
- 5a Rueping M, Zhu S, Koenig RM. Chem. Commun. 2011; 47: 8679
- 5b Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
- 5c Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
- 6a Millet A, Cesana PT, Sedillo K, Bird MJ, Schlau-Cohen GS, Doyle AG, MacMillan DW. C, Scholes GD. Acc. Chem. Res. 2022; 55: 1423
- 6b Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 6c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 7a Majek M, Filace F, von Wangelin AJ. Beilstein J. Org. Chem. 2014; 10: 981
- 7b Herbrik F, Camarero González P, Krstic M, Puglisi A, Benaglia M, Sanz MA, Rossi S. Appl. Sci. 2020; 10: 5596
- 8a Gross Z, Simkhovich L, Galili N. Chem. Commun. 1999; 599
- 8b Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z. J. Phys. Chem. A 2022; 106: 4772
- 8c Luobeznova I, Raizman M, Goldberg I, Gross Z. Inorg Chem. 2006; 45: 386
- 9a Sorokin AB. Chem. Rev. 2013; 113: 8152
- 9b Sorokin AB, Kudrik EV. Catal. Today 2011; 159: 37
- 9c Ji D, Lu X, He R. Appl. Catal., A 2000; 203: 329
- 10a Herreo C, Quaranta A, Ricoux R, Trehoux A, Mahammed A, Gross Z, Banse F, Mahy J.-P. Dalton Trans. 2016; 45: 706
- 10b Gross Z, Golubkov G, Simkhovich L. Angew. Chem. Int. Ed. 2000; 39: 4045
- 11 Janaagal A, Pandey V, Sabharwal S, Gupta I. J. Porphyrins Phthalocyanines 2021; 25: 571
- 12 Owens JW, Smith R, Robinson R, Robins M. Inorg. Chim. Acta 1998; 279: 226
- 13 Wasbotten JH, Conradie J, Ghosh A. J. Phys. Chem. B 2003; 107: 3613
- 14 Pandey V, Jain D, Pareek N, Gupta I. Inorg. Chim. Acta 2020; 502: 119339
- 15 Pandey V, Janaagal A, Jain A, Mori S, Gupta I. Dyes Pigm. 2023; 209: 110861
- 16 Hajimohammadi M, Safari N, Mofakham H, Shaabani A. Tetrahedron Lett. 2010; 51: 4061
- 17 Hajimohammadi M, Mofakham H, Safari N, Manesh AM. J. Porphyrins Phthalocyanines 2012; 16: 93
- 18 Malone J, Klaine S, Alcantar C, Bratcher F, Zhang R. New J. Chem. 2021; 45: 4977
- 19 Capaldo L, Ertl M, Fagnoni M, Knor G, Ravelli D. ACS Catal. 2020; 10: 9057
- 20 Shremzer ES, Polivanovskaia DA, Birin KP, Gorbunova YG, Tsivadze AY. Dyes Pigm. 2023; 210: 110935
- 21 Palivanovskaia DA, Abdulaeva IA, Birin KP, Gorbunova YG, Tsivadze AY. J. Catal. 2022; 413: 342
- 22 Yamashita K, Sugiura K. Tetrahedron Lett. 2019; 60: 151081
- 23 Zhang P, Yu C, Yin Y, Droste J, Klabunde S, Hansen MR, Mai Y. Chem. Eur. J. 2020; 69: 16497
- 24 Cheng Y, Zhang Z, Duan X, Zhang M. Dalton Trans. 2022; 51: 16517
- 25 Hong YH, Han JW, Jung J, Nakagawa T, Lee Y.-M, Nam W, Fukuzumi S. J. Am. Chem. Soc. 2019; 141: 9155
- 26 Jasinska KR, Wdowik T, Łuczak K, Wierzba AJ, Drapala O, Gryko D. ACS Org. Inorg. Au 2022; 2: 422
- 27 Wang HH, Shao H, Huang G, Fan J, To WP, Dang L, Liu Y, Che CM. Angew. Chem. Int. Ed. 2023; 62: e202303981
- 28 Yu XY, Su H, Zheng X, Liu WB, He Y, Fei NN, Qiao R, Ren YL, Niu CY. J. Mol. Struct. 2021; 1237: 130358
- 29 Jasinska KR, Konig B, Gryko D. Eur. J. Org. Chem. 2017; 2104
- 30 Castano JC. B, Carmona-Vargas CC, Brckson TJ, Oliveira KT. Molecules 2016; 21: 310
- 31 Fukuzumi S, Nam W. J. Porphyrins Phthalocyanines 2016; 20: 35
- 32 Jasinska K, Shan W, Zawada K, Kadish KM, Gryko D. J. Am. Chem. Soc. 2016; 138: 15451
- 33 Silva RC, Silva LO, Bartolomeu AD. A, Brocksom TJ, Oliveira KT. Beilstein J. Org. Chem. 2020; 16: 917
- 34 Souza AA. N, Silva NS, Muller AV, Polo AS, Brocksom TJ, Oliveira KT. J. Org. Chem. 2018; 83: 15077
- 35 Hajimohammadi M, Safari N, Mofakham H, Deyhimi F. Green Chem. 2011; 13: 991
- 36 Hajimohammadi M, Safari N. J. Porphyrins Phthalocyanines 2010; 14: 639
- 37 Gao X, Tong X, Liu R, Zhang Y. Catal. Sci. Technol. 2023; 13: 6132
- 38 Jasinska KR, Ciszewski LW, Gryko DT, Gryko D. J. Porphyrins Phthalocyanines 2016; 20: 76
- 39 Li BZ, Qian YY, Liu J, Chan KS. Organometallics 2014; 33: 7059
- 40 Janaagal A, Sanyam, Mondal A, Gupta I. J. Org. Chem. 2023; 88: 9424
- 41 Gao X, Tong X, Zhang Y, Xue S. iScience 2023; 7: 107203
- 42 Du YD, Zhou CY, To WP, Wang HX, Che CM. Chem. Sci. 2020; 11: 4680
- 43 Asghari S, Farahmand S, Razavizadeh JS, Ghiaci M. J. Photochem. Photobiol., A 2020; 392: 112412
- 44 Ozturmen BA, Akkol C, Saka ET, Biyiklioglu Z. Inorg. Chem. Commun. 2023; 158: 111647
- 45 Chauhan SM. S, Srinivas KA, Srivastava PK, Sahoo B. J. Porphyrins Phthalocyanines 2003; 7: 548
- 46 Yalazan H, Akkol C, Saka ET, Kantekin H. Appl. Organomet. Chem. 2023; 37: e6975
- 47 Katsurayama Y, Ikabata Y, Maeda H, Segi M, Nakai H, Furuyama T. Chem. Eur. J. 2023; 28: e202103223
- 48 Yalazan H, Tekintas K, Serdaroglu V, Saka ET, Kahriman N, Kantekin H. Inorg. Chem. Commun. 2020; 118: 107998
- 49 Saka ET, Tekintas K, Bekircan O, Biyiklioglu Z. Inorg. Chim. Acta 2023; 547: 121342
- 50 Saka ET, Cakmak U, Akkol C, Biyiklioglu Z. Polyhedron 2023; 243: 116522
- 51 Grundke C, Silva RC, Kitzmann WR, Heinze K, Oliveira KT, Opatz T. J. Org. Chem. 2022; 87: 5630
- 52 Liu L, Lin J, Pang M, Jin H, Yu X, Wang S. Org. Lett. 2022; 24: 1146
- 53 Yerien DE, Cooke MV, Vior MC. G, Vallejo SB, Postigo A. Org. Biomol. Chem. 2019; 17: 3741
- 54 Dickerson SD, Ayare PJ, Vannucci AK, Wiskur SL. J. Photochem. Photobiol., A 2022; 422: 113547
- 55 Fazli H, Akkol C, Osmanogullari SC, Bekircan O. J. Organomet. Chem. 2023; 983: 122553
- 56 Lancel M, Golisano T, Monnereau C, Gomez C, Port M, Amara Z. ACS Sustainable Chem. Eng. 2023; 11: 15674
- 57 Ishikawa Y, Kameyama T, Torimoto T, Maeda H, Segi M, Furuyama T. Chem. Commun. 2021; 57: 13594
- 58 Saka ET, Tekintas K. J. Mol. Struct. 2020; 1215: 128189
- 59 Chen J, Zhu C, Xu Y, Zhang P, Liang T. Curr. Org. Chem. 2018; 22: 485
- 60 Laliya OK, Lukyanets EA, Vorozhtsov GN. J. Porphyrins Phthalocyanines 1999; 3: 592
- 61 Lever AB. P. Adv. Inorg. Chem. Radiochem. 1965; 7: 27
- 62 Moons H, Loas A, Gorun SM, Doorslaer SV. Dalton Trans. 2014; 43: 14942
- 63 Marais E, Klein R, Antunes E, Nyokong T. J. Mol. Catal. A: Chem. 2007; 261: 36
- 64 Iliev V, Bilyarska VA. J. Mol. Catal. A: Chem. 1999; 137: 15
- 65 Ogunbayo TB, Nyokong T. J. Mol. Struct. 2010; 973: 96
- 66 Tau P, Nyokong T. J. Mol. Catal. A: Chem. 2007; 273: 149
- 67 Koohgard M, Sarvari MH. Org. Biomol. Chem. 2021; 19: 5905
- 68 Ding T, Aleman EA, Modarelli DA, Ziegler CJ. J. Phys. Chem. A 2005; 109: 7411
- 69 Mahammed A, Gross Z. Angew. Chem. Int. Ed. 2015; 54: 12547
- 70 Harel IA, Gross Z. Chem. Eur. J. 2009; 15: 8382
- 71 Aviv I, Gross Z. Chem. Commun. 2007; 20: 1987
- 72 Lemon CM. Pure Appl. Chem. 2020; 92: 1901
- 73 Gryko DT. Eur. J. Org. Chem. 2002; 1735
- 74 Natale CD, Gros CP, Paolesse R. Chem. Soc. Rev. 2022; 51: 1277
- 75 Orlowski R, Gryko D, Gryko DT. Chem. Rev. 2017; 117: 3102
- 76 Lemon CM, Maher AG, Mazzotti AR, Powers DC, Gonzalez MI, Nocera DG. Chem. Commun. 2020; 56: 5247
- 77 Reith LM, Stiftinger M, Monkowius U, Knor G, Schoefberger W. Inorg. Chem. 2011; 50: 6788
- 78 Zhan X, Kolanu S, Fite S, Chen QC, Lee W, Churchill DG, Gross Z. Photochem. Photobiol. Sci. 2020; 19: 996
- 79 Zhan X, Teplitzky P, Posner YD, Sundararajan M, Ullah Z, Chen QC, Shimon LJ. W, Saltsman I, Mahammed A, Kosa M, Baik MH, Churchill DG, Gross Z. Inorg. Chem. 2019; 58: 6184
- 80 Mahammed A, Chen K, Vestfrid J, Zhao J, Gross Z. Chem. Sci. 2019; 10: 7091
- 81 Zhan X, Yadav P, Posner YD, Fridman N, Sundararajan M, Ullah Z, Chen QC, Shimon LJ. W, Mahammed A, Churchill DG, Baik MH, Gross Z. Dalton Trans. 2019; 48: 12279
Corresponding Author
Publication History
Received: 27 March 2024
Accepted after revision: 26 June 2024
Article published online:
13 August 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Majek M, Wangelin AJ. Acc. Chem. Res. 2016; 49: 2316
- 2 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 3 Pitre SP, McTiernan CD, Scaiano JC. Acc. Chem. Res. 2016; 49: 1320
- 4a Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
- 4b Takeda H, Ishitani O. Coord. Chem. Rev. 2010; 254: 346
- 4c Gratzel M. Acc. Chem. Res. 1981; 14: 376
- 4d Kalyanasundaram K, Gratzel M. Chem. Rev. 1998; 77: 347
- 5a Rueping M, Zhu S, Koenig RM. Chem. Commun. 2011; 47: 8679
- 5b Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
- 5c Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
- 6a Millet A, Cesana PT, Sedillo K, Bird MJ, Schlau-Cohen GS, Doyle AG, MacMillan DW. C, Scholes GD. Acc. Chem. Res. 2022; 55: 1423
- 6b Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 6c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 7a Majek M, Filace F, von Wangelin AJ. Beilstein J. Org. Chem. 2014; 10: 981
- 7b Herbrik F, Camarero González P, Krstic M, Puglisi A, Benaglia M, Sanz MA, Rossi S. Appl. Sci. 2020; 10: 5596
- 8a Gross Z, Simkhovich L, Galili N. Chem. Commun. 1999; 599
- 8b Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z. J. Phys. Chem. A 2022; 106: 4772
- 8c Luobeznova I, Raizman M, Goldberg I, Gross Z. Inorg Chem. 2006; 45: 386
- 9a Sorokin AB. Chem. Rev. 2013; 113: 8152
- 9b Sorokin AB, Kudrik EV. Catal. Today 2011; 159: 37
- 9c Ji D, Lu X, He R. Appl. Catal., A 2000; 203: 329
- 10a Herreo C, Quaranta A, Ricoux R, Trehoux A, Mahammed A, Gross Z, Banse F, Mahy J.-P. Dalton Trans. 2016; 45: 706
- 10b Gross Z, Golubkov G, Simkhovich L. Angew. Chem. Int. Ed. 2000; 39: 4045
- 11 Janaagal A, Pandey V, Sabharwal S, Gupta I. J. Porphyrins Phthalocyanines 2021; 25: 571
- 12 Owens JW, Smith R, Robinson R, Robins M. Inorg. Chim. Acta 1998; 279: 226
- 13 Wasbotten JH, Conradie J, Ghosh A. J. Phys. Chem. B 2003; 107: 3613
- 14 Pandey V, Jain D, Pareek N, Gupta I. Inorg. Chim. Acta 2020; 502: 119339
- 15 Pandey V, Janaagal A, Jain A, Mori S, Gupta I. Dyes Pigm. 2023; 209: 110861
- 16 Hajimohammadi M, Safari N, Mofakham H, Shaabani A. Tetrahedron Lett. 2010; 51: 4061
- 17 Hajimohammadi M, Mofakham H, Safari N, Manesh AM. J. Porphyrins Phthalocyanines 2012; 16: 93
- 18 Malone J, Klaine S, Alcantar C, Bratcher F, Zhang R. New J. Chem. 2021; 45: 4977
- 19 Capaldo L, Ertl M, Fagnoni M, Knor G, Ravelli D. ACS Catal. 2020; 10: 9057
- 20 Shremzer ES, Polivanovskaia DA, Birin KP, Gorbunova YG, Tsivadze AY. Dyes Pigm. 2023; 210: 110935
- 21 Palivanovskaia DA, Abdulaeva IA, Birin KP, Gorbunova YG, Tsivadze AY. J. Catal. 2022; 413: 342
- 22 Yamashita K, Sugiura K. Tetrahedron Lett. 2019; 60: 151081
- 23 Zhang P, Yu C, Yin Y, Droste J, Klabunde S, Hansen MR, Mai Y. Chem. Eur. J. 2020; 69: 16497
- 24 Cheng Y, Zhang Z, Duan X, Zhang M. Dalton Trans. 2022; 51: 16517
- 25 Hong YH, Han JW, Jung J, Nakagawa T, Lee Y.-M, Nam W, Fukuzumi S. J. Am. Chem. Soc. 2019; 141: 9155
- 26 Jasinska KR, Wdowik T, Łuczak K, Wierzba AJ, Drapala O, Gryko D. ACS Org. Inorg. Au 2022; 2: 422
- 27 Wang HH, Shao H, Huang G, Fan J, To WP, Dang L, Liu Y, Che CM. Angew. Chem. Int. Ed. 2023; 62: e202303981
- 28 Yu XY, Su H, Zheng X, Liu WB, He Y, Fei NN, Qiao R, Ren YL, Niu CY. J. Mol. Struct. 2021; 1237: 130358
- 29 Jasinska KR, Konig B, Gryko D. Eur. J. Org. Chem. 2017; 2104
- 30 Castano JC. B, Carmona-Vargas CC, Brckson TJ, Oliveira KT. Molecules 2016; 21: 310
- 31 Fukuzumi S, Nam W. J. Porphyrins Phthalocyanines 2016; 20: 35
- 32 Jasinska K, Shan W, Zawada K, Kadish KM, Gryko D. J. Am. Chem. Soc. 2016; 138: 15451
- 33 Silva RC, Silva LO, Bartolomeu AD. A, Brocksom TJ, Oliveira KT. Beilstein J. Org. Chem. 2020; 16: 917
- 34 Souza AA. N, Silva NS, Muller AV, Polo AS, Brocksom TJ, Oliveira KT. J. Org. Chem. 2018; 83: 15077
- 35 Hajimohammadi M, Safari N, Mofakham H, Deyhimi F. Green Chem. 2011; 13: 991
- 36 Hajimohammadi M, Safari N. J. Porphyrins Phthalocyanines 2010; 14: 639
- 37 Gao X, Tong X, Liu R, Zhang Y. Catal. Sci. Technol. 2023; 13: 6132
- 38 Jasinska KR, Ciszewski LW, Gryko DT, Gryko D. J. Porphyrins Phthalocyanines 2016; 20: 76
- 39 Li BZ, Qian YY, Liu J, Chan KS. Organometallics 2014; 33: 7059
- 40 Janaagal A, Sanyam, Mondal A, Gupta I. J. Org. Chem. 2023; 88: 9424
- 41 Gao X, Tong X, Zhang Y, Xue S. iScience 2023; 7: 107203
- 42 Du YD, Zhou CY, To WP, Wang HX, Che CM. Chem. Sci. 2020; 11: 4680
- 43 Asghari S, Farahmand S, Razavizadeh JS, Ghiaci M. J. Photochem. Photobiol., A 2020; 392: 112412
- 44 Ozturmen BA, Akkol C, Saka ET, Biyiklioglu Z. Inorg. Chem. Commun. 2023; 158: 111647
- 45 Chauhan SM. S, Srinivas KA, Srivastava PK, Sahoo B. J. Porphyrins Phthalocyanines 2003; 7: 548
- 46 Yalazan H, Akkol C, Saka ET, Kantekin H. Appl. Organomet. Chem. 2023; 37: e6975
- 47 Katsurayama Y, Ikabata Y, Maeda H, Segi M, Nakai H, Furuyama T. Chem. Eur. J. 2023; 28: e202103223
- 48 Yalazan H, Tekintas K, Serdaroglu V, Saka ET, Kahriman N, Kantekin H. Inorg. Chem. Commun. 2020; 118: 107998
- 49 Saka ET, Tekintas K, Bekircan O, Biyiklioglu Z. Inorg. Chim. Acta 2023; 547: 121342
- 50 Saka ET, Cakmak U, Akkol C, Biyiklioglu Z. Polyhedron 2023; 243: 116522
- 51 Grundke C, Silva RC, Kitzmann WR, Heinze K, Oliveira KT, Opatz T. J. Org. Chem. 2022; 87: 5630
- 52 Liu L, Lin J, Pang M, Jin H, Yu X, Wang S. Org. Lett. 2022; 24: 1146
- 53 Yerien DE, Cooke MV, Vior MC. G, Vallejo SB, Postigo A. Org. Biomol. Chem. 2019; 17: 3741
- 54 Dickerson SD, Ayare PJ, Vannucci AK, Wiskur SL. J. Photochem. Photobiol., A 2022; 422: 113547
- 55 Fazli H, Akkol C, Osmanogullari SC, Bekircan O. J. Organomet. Chem. 2023; 983: 122553
- 56 Lancel M, Golisano T, Monnereau C, Gomez C, Port M, Amara Z. ACS Sustainable Chem. Eng. 2023; 11: 15674
- 57 Ishikawa Y, Kameyama T, Torimoto T, Maeda H, Segi M, Furuyama T. Chem. Commun. 2021; 57: 13594
- 58 Saka ET, Tekintas K. J. Mol. Struct. 2020; 1215: 128189
- 59 Chen J, Zhu C, Xu Y, Zhang P, Liang T. Curr. Org. Chem. 2018; 22: 485
- 60 Laliya OK, Lukyanets EA, Vorozhtsov GN. J. Porphyrins Phthalocyanines 1999; 3: 592
- 61 Lever AB. P. Adv. Inorg. Chem. Radiochem. 1965; 7: 27
- 62 Moons H, Loas A, Gorun SM, Doorslaer SV. Dalton Trans. 2014; 43: 14942
- 63 Marais E, Klein R, Antunes E, Nyokong T. J. Mol. Catal. A: Chem. 2007; 261: 36
- 64 Iliev V, Bilyarska VA. J. Mol. Catal. A: Chem. 1999; 137: 15
- 65 Ogunbayo TB, Nyokong T. J. Mol. Struct. 2010; 973: 96
- 66 Tau P, Nyokong T. J. Mol. Catal. A: Chem. 2007; 273: 149
- 67 Koohgard M, Sarvari MH. Org. Biomol. Chem. 2021; 19: 5905
- 68 Ding T, Aleman EA, Modarelli DA, Ziegler CJ. J. Phys. Chem. A 2005; 109: 7411
- 69 Mahammed A, Gross Z. Angew. Chem. Int. Ed. 2015; 54: 12547
- 70 Harel IA, Gross Z. Chem. Eur. J. 2009; 15: 8382
- 71 Aviv I, Gross Z. Chem. Commun. 2007; 20: 1987
- 72 Lemon CM. Pure Appl. Chem. 2020; 92: 1901
- 73 Gryko DT. Eur. J. Org. Chem. 2002; 1735
- 74 Natale CD, Gros CP, Paolesse R. Chem. Soc. Rev. 2022; 51: 1277
- 75 Orlowski R, Gryko D, Gryko DT. Chem. Rev. 2017; 117: 3102
- 76 Lemon CM, Maher AG, Mazzotti AR, Powers DC, Gonzalez MI, Nocera DG. Chem. Commun. 2020; 56: 5247
- 77 Reith LM, Stiftinger M, Monkowius U, Knor G, Schoefberger W. Inorg. Chem. 2011; 50: 6788
- 78 Zhan X, Kolanu S, Fite S, Chen QC, Lee W, Churchill DG, Gross Z. Photochem. Photobiol. Sci. 2020; 19: 996
- 79 Zhan X, Teplitzky P, Posner YD, Sundararajan M, Ullah Z, Chen QC, Shimon LJ. W, Saltsman I, Mahammed A, Kosa M, Baik MH, Churchill DG, Gross Z. Inorg. Chem. 2019; 58: 6184
- 80 Mahammed A, Chen K, Vestfrid J, Zhao J, Gross Z. Chem. Sci. 2019; 10: 7091
- 81 Zhan X, Yadav P, Posner YD, Fridman N, Sundararajan M, Ullah Z, Chen QC, Shimon LJ. W, Mahammed A, Churchill DG, Baik MH, Gross Z. Dalton Trans. 2019; 48: 12279



























