RSS-Feed abonnieren

DOI: 10.1055/s-0040-1720162
The Diverse Applications of Sodium l-Ascorbate as a Reducing Agent in Organic Synthesis
Abstract
Sodium l-ascorbate is an inexpensive and non-hazardous organic salt derived from ascorbic acid that is widely applied as a reducing agent in diverse industrial processes and occurs naturally in some plants and animals. In organic synthesis it can participate in a variety of reactions, playing different roles as a secondary or main reactant to promote a wide range of chemical transformations, being most commonly used along with metallic catalysts. This graphical review highlights some of the numerous applications of sodium ascorbate as a reactant in organic reactions.
#
Biosketches


Letícia Ribeiro Magalhães received her chemistry degree from the Federal University of Rio Grande do Norte in 2019. Currently, she is a pharmacy student and an undergraduate researcher at the same institution under the supervision of Prof. A. K. Jordão and Prof. E. G. Barbosa. Her work involves the synthesis of potentially bioactive heterocyclic compounds.


Euzebio Guimarães Barbosa received his Ph.D. in chemistry from Campinas University (UNICAMP) in 2011 under the supervision of Prof. Marcia Miguel Castro Ferreira. Currently he is a professor at the Federal University of Rio Grande do Norte. His research interests focus on medicinal chemistry and computer-aided drug design.


Alessandro Kappel Jordão received his Ph.D. in chemistry from Fluminense Federal University (UFF) in 2010 under the supervision of Prof. Vitor Francisco Ferreira and Prof. Anna Claudia. Currently, he is a professor at the Federal University of Rio Grande do Norte. His research interests focus on the synthesis of heterocyclic compounds.
Sodium l-ascorbate is an organic sodium salt that occurs as a white to slightly yellowish powder, is readily soluble in water and is only very slightly soluble in ethanol. In aqueous solutions it exhibits pH values of 5.6 to 7.0 or higher.[1] It can be obtained by dissolution of ascorbic acid (vitamin C) in water followed by the addition of an equivalent amount of sodium bicarbonate, which generates effervescence. Upon completion of the effervescence, sodium ascorbate can be precipitated by the addition of isopropanol (Scheme [1]).[2]


Being an inexpensive, environmentally friendly and non-hazardous compound, ascorbate is widely applied as an antioxidant in pharmaceutical manufacturing, the food industry and in the production of cosmetics.[3] It also acts as a coenzyme and a reducing agent, occurs as a metabolite in some plants and animals and shows in vitro cytotoxic effects in malignant cell lines, of which melanoma cells are particularly susceptible.[4]
In organic synthesis, its most common employment is to induce click chemistry reactions,[5] but it can also be applied in a variety of chemical transformations under different reaction conditions, both as a secondary reactant or as a main reactant. Due to its reducing power, sodium ascorbate is commonly used along with a metallic catalyst for the purpose of reducing it to its most active form, contributing to increased reaction yields. The reducing activity of ascorbate also serves to avoid the formation of undesired byproducts. In addition to conventional metallic catalysts, the ascorbic acid sodium salt can also help to activate photocatalysts, participating in the formation of free radicals to promote photoredox-catalyzed reactions,[6] and plays a role in electrochemical reactions.[7] This graphical review provides a detailed overview of the many applications of sodium l-ascorbate as a reactant in organic chemistry through history.












































#
Conflict of Interest
The authors declare no conflict of interest.
-
References
- 1 Food Additives Data Book . Smith J, Hong-Shum L. Blackwell Science Ltd; Oxford: 2003: 646-647
- 2 The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals. Budavari S. Merck and Co., Inc; Rahway (NJ, USA): 1989: 1357
- 3 PubChem Compound Summary: Sodium Ascorbate . NIH National Library of Medicine, National Center for Biotechnology Information; Bethesda (MD, USA): 2025. https //pubchem.ncbi.nlm.nih.gov/compound/23667548 (accessed Feb 3, 2025)
- 4 ChEBI: 113451: Sodium Ascorbate . EMBL-EBI, Wellcome Genome Campus; Hinxton (UK): 2021. https //www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:113451
- 5 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
- 6 Wallentin C, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
- 7 Deena PL, Selvaraj SJ. K, J. T. Orient. J. Chem. 2022; 38: 1236
- 8a Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565
- 8b Feldman AK, Colasson B, Fokin VV. Org. Lett. 2004; 6: 3897
- 8c Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 633
- 8d Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 8e Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
- 8f Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
- 9a Joosten JA. F, Tholen NT. H, El Maate FA, Brouwer AJ, van Esse GW, Rijkers DT. S, Liskamp RM. J, Pieters RJ. Eur. J. Org. Chem. 2005; 3182
- 9b Kolarovic A, Schnürch M, Mihovilovic MD. J. Org. Chem. 2011; 76: 2613
- 9c Mindt TL, Schibli R. J. Org. Chem. 2007; 72: 10247
- 9d George GP. C, Pisaneschi F, Stevens E, Nguyen Q, Åberg O, Spivey AC, Aboagye EO. J. Labelled Compd. Radiopharm. 2013; 56: 679
- 9e Lidström P, Tierney J, Wathey B, Westman J. Tetrahedron 2001; 57: 9225
- 9f Bogdal D. Microwave-Assisted Organic Synthesis: One Hundred Reaction Procedures. Elsevier; Amsterdam: 2005
- 9g Khanna A, Dubey P, Sagar R. Curr. Org. Chem. 2021; 25: 2378
- 9h Ahmed Fuaad AA. H, Azmi F, Skwarczynski MToth I. Molecules 2013; 18: 13148
- 9i Li H, Aneja R, Chaiken I. Molecules 2013; 18: 9797
- 9j Agouram N, El Hadrami ElM, Bentama A. Molecules 2021; 26: 2937
- 10a Fletcher JT, Christensen JA, Villa EM. Tetrahedron Lett. 2017; 58: 4450
- 10b Ansejo-Sanz I, Claros T, González E, Pinacho-Olaciregui J, Verde-Sesto E, Pomposo JA. Mater. Lett. 2021; 304: 130622
- 10c Golliher AE, Tenorio AJ, Cornali BM, Monroy EY, Tello-Aburto R, Holguin FO, Maio WA. Tetrahedron Lett. 2021; 102: 132536
- 10d Pawar A, Gajare S, Jagdale A, Patil S, Chandane W, Rashinkar G, Patil S. Catal. Lett. 2021; 152: 1854
- 10e Aier M, Gayen FR, Puzari A. Sci. Rep. 2022; 12: 14613
- 10f Jankovič D, Virant M, Gazvoda M. J. Org. Chem. 2022; 87: 4018
- 10g Nanocatalysis: Synthesis and Applications . Polshettiwar V, Asefa T. John Wiley & Sons; Hoboken: 2013
- 10h Nanomagnetic Materials: Fabrication, Characterization and Application. Yamaguchi A, Hirohata A, Stadler B. Elsevier; Amsterdam: 2021
- 10i Gova J, Gun’ko YK. Nanomaterials 2014; 4: 222
- 11a Suzuki H, Miyoshi K, Shinoda M. Bull. Chem. Soc. Jpn. 1980; 53: 1765
- 11b Zhu W, Ma D. J. Chem. Soc., Chem. Commun. 2004; 888
- 11c Andersen J, Madsen U, Björkling F, Liang X. Synlett 2005; 2209
- 11d Whiting M, Fokin VV. Angew. Chem. Int. Ed. 2006; 45: 3157
- 11e Li Y, Flood AH. Angew. Chem. Int. Ed. 2008; 47: 2649
- 11f Quan Z, Xia H, Zhang Z, Da Y, Wang X. Chin. J. Chem. 2013; 31: 501
- 11g Shao B, Du H, Lu R, Luo Y, Zhang S. Chin. J. Chem. Eng. 2016; 24: 1000
- 11h Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 298
- 11i Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 12a Quan Z, Xia H, Zhang Z, Da Y, Wang X. Tetrahedron 2013; 69: 8368
- 12b Larsen AF, Ulven T. Chem. Commun. 2014; 50: 4997
- 12c Abdoli M, Mirjafary Z, Saeidian H, Kakanejadifard A. RSC Adv. 2015; 5: 44371
- 12d Liang Y, Wnuk SF. Molecules 2015; 20: 4874
- 12e Conejo-Garcia A, Cruz-López O, Gómez-Pérez V, Morales F, García-Rubiño ME, Kimatrai M, Núñez MC, Campos JM. Curr. Org. Chem. 2010; 14: 2463
- 12f Liang Y, Wnuk SF. C–H Bond Functionalization Strategies for Modification of Nucleosides. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Maiti D, Sanghvi YS. Elsevier; Amsterdam: 2018. 197
- 13a Bernhardson DJ, Widlicka DW, Singer RA. Org. Process Res. Dev. 2019; 8: 1538
- 13b Chen Y, Faver JC, Ku AF, Miklossy G, Riehle K, Bohren KM, Ucisik MN, Matzuk MM, Yu Z, Simmons N. Bioconjugate Chem. 2020; 31: 770
- 13c Kupietz K, Trouvé J, Roisnel T, Kahlal S, Gramage-Doria R. Eur. J. Org. Chem. 2023; 26: e202300621
- 13d Bevilacqua M, Giuso V, Rancan M, Armelao L, Graiff C, Baratta W, Di Marco V, Biffis A. Eur. J. Inorg. Chem. 2022; e202200484
- 13e Roemer M, Luck I, Proschogo N. Adv. Synth. Catal. 2022; 364: 2957
- 14a Cassidy MP, Raushel J, Fokin VV. Angew. Chem. Int. Ed. 2006; 45: 3154
- 14b Chen Y, Kamlet AS, Steinman JB, Liu DR. Nat. Chem. 2011; 3: 146
- 14c Chen J, Li K, Shon JS, Zimmerman SC. J. Am. Chem. Soc. 2020; 142: 4565
- 15a Bryant IR, Dyall LK. Aust. J. Chem. 1989; 42: 2275
- 15b Renault K, Sabot C, Renard P. Eur. J. Org. Chem. 2015; 7992
- 15c Guliyev R, Ozturk S, Kostareli Z, Akkaya EU. Angew. Chem. Int. Ed. 2011; 50: 9826
- 15d Trnka J, Blaikie FH, Smith RA. J, Murphy MP. Free Radic. Biol. Med. 2008; 44: 1406
- 15e Rajeswari PS, Nagarajan R, Sujith KP, Emmanuvel L. J. Organomet. Chem. 2021; 931: 121627
- 15f Anderson JE, Corrie JE. T. J. Chem. Soc., Perkin Trans. 2 1992; 1027
- 15g Ionita P, Whitwood AC, Gilbert BC. J. Chem. Soc., Perkin Trans. 2 2001; 1453
- 15h Bognár B, Jeko J, Kálai T, Hideg K. Dyes Pigm. 2010; 87: 218
- 15i Dixon DJ, Morejón OP. Recent Developments in the Reduction of Nitro and Nitroso Compounds . In Comprehensive Organic Synthesis II, Vol. 8. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 479
- 15j Orlandi M, Brenna D, Harms R, Jost S, Benaglia M. Org. Process Res. Dev. 2018; 22: 430
- 15k Sassykova LR, Aubakirov YA, Sendilvelan S, Tashmukhambetova ZhKh, Ryskaliyeva RG, Tyussyupova BB, Abildin TS. Orient. J. Chem. 2019; 35: 22
- 15l Gebicki JM, Nauser T, Domazou A, Steinmann D, Bounds PL, Koppenol WH. Amino Acids 2010; 39: 1131
- 16a Hamukoshi SS, Mama N, Ngororabanga JM. V, Schoeman S, Shafuda NH, Uahengo V, Hosten E. ARKIVOC 2023; 202312030
- 16b Palo-Nieto C, Sau A, Jeanneret R, Payard P, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Org. Lett. 2020; 22: 1991
- 16c Miura T, Moriyama D, Miyakawa S, Murakami M. Chem. Lett. 2020; 49: 1382
- 16d Deborye E, Eliseeva SV, Laurent S, Elst LV, Petoud S, Muller RN, Parac-Vogt TN. Eur. J. Inorg. Chem. 2013; 2629
- 16e Kitzig S, Rück-Braun K. J. Pept. Sci. 2017; 23: 567
- 16f Gotor-Fernández V, Gotor V. Enantioselective Acylation of Alcohol and Amine Reactions in Organic Synthesis. In Green Biocatalysis. Patel RN. John Wiley & Sons; Hoboken: 2016. 231
- 16g Piazzolla F, Temperini A. Tetrahedron Lett. 2018; 59: 2615
- 16h Taylor JE, Bull SD. N-Acylation Reactions of Amines. In Comprehensive Organic Synthesis II, Vol. 6. Knochel P, Molander GA. Elsevier; Amsterdam: 2014. 427
- 17a Ohata J, Ball ZT. Chem. Commun. 2017; 53: 1622
- 17b Keylor MH, Park JE, Wallentin C, Stephenson CR. J. Tetrahedron 2014; 70: 4264
- 17c Voutyritsa E, Triandafillidi I, Kokotos CG. ChemCatChem 2018; 10: 2466
- 17d Donald JR, Berrell SL. Chem. Sci. 2019; 10: 5832
- 17e Rossi L, Feroci M, Inesi A. Mini-Rev. Org. Chem. 2005; 2: 79
- 17f Ahmad MS, Pulidindi IN, Li C. New J. Chem. 2020; 44: 17177
- 18a Xie J, Li J, Weingand V, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2016; 22: 12646
- 18b Rahimidashaghoul K, Klimánková I, Hubálek M, Korecký M, Chvojka M, Pokorný D, Matoušek V, Fojtík L, Kavan D, Kukačka Z, Novák P, Beier P. Chem. Eur. J. 2019; 25: 15779
- 18c Delaude L, Demonceau A, Noels AF. Top. Organomet. Chem. 2004; 11: 155
- 18d Severin K. Chimia 2012; 66: 386
- 18e Alonso DA, Nájera C. Negishi Coupling . In Science of Synthesis: Water in Organic Synthesis . Kobayashi S. Georg Thieme Verlag KG; Stuttgart: 2012. 535
- 18f Bräse S, de Meijere A. Cross-Coupling of Organyl Halides with Alkenes: the Heck Reaction. In Metal-Catalyzed Cross-Coupling Reactions, Vol. 1. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004. 217
- 19a Matinek M, Korf M, Srogl J. Chem. Commun. 2010; 46: 4387
- 19b Yuan L, Zhang Z, Xu X, Zhou X. Synth. Commun. 2014; 44: 1007
- 19c Pandey AK, Naduthambi D, Thomas KM, Zondlo NJ. J. Am. Chem. Soc. 2013; 135: 4333
- 19d Kumpan K, Nathubhai A, Zhang C, Wood PJ, Lloyd MD, Haikarainen T, Thompson AS, Lehtiö L, Threadgill MD. Bioorg. Med. Chem. 2015; 23: 3013
- 19e Paine HA, Nathubhai A, Woon EC. Y, Sunderland PT, Wood PJ, Mahon MF, Lloyd MD, Thompson AS, Haikarainen T, Narwal M, Lehtiö L, Threadgill MD. Bioorg. Med. Chem. 2015; 23: 5891
- 20a Li N, Lim RK.V, Edwardraja S, Lin Q. J. Am. Chem. Soc. 2011; 133: 15316
- 20b Li N, Ramil CP, Lim RK. V, Lin Q. ACS Chem. Biol. 2015; 10: 379
- 20c Hauke S, Best M, Schmidt TT, Baalmann M, Krause A, Wombacher R. Bioconjugate Chem. 2014; 25: 1632
- 20d Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
- 20e Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 21a Gillman IG, Clark TN, Manderville RA. Chem. Res. Toxicol. 1999; 12: 1066
- 21b McIntyre NR, Lowe EW, Merkler DJ. J. Am. Chem. Soc. 2009; 131: 10308
- 21c Tozzi F, Ley SV, Kitching MO, Baxendale IR. Synlett 2010; 1919
- 21d Baud D, Saaidi P, Monfleur A, Harari M, Cuccaro J, Fossey A, Besnard M, Debard A, Mariage A, Pellouin V, Petit J, Salanoubat M, Weissenbach J, de Berardinis V, Zaparucha A. ChemCatChem 2014; 6: 3012
- 21e Hibi M, Kawashima T, Sokolov PM, Smirnov SV, Kodera T, Sugiyama M, Shimizu S, Yokozeki K, Ogawa J. Appl. Microbiol. Biotechnol. 2013; 97: 2467
- 21f See YY, Herrmann AT, Aihara Y, Baran PS. J. Am. Chem. Soc. 2015; 137: 13776
- 21g Zhao C, Ye Z, Ma Z, Wildman SA, Blaszczyk SA, Hu L, Guizei IA, Tang W. Nat. Commun. 2019; 10: 4015
- 22a Mu T, Wei B, Zhu D, Yu B. Nat. Commun. 2020; 11: 4371
- 22b Silveira-Dorta G, Monzón DM, Crisóstomo FP, Martín T, Martín VS, Carrillo R. Chem. Commun. 2015; 51: 7027
- 22c Ionita P, Tuna F, Andruh M, Constatinescu T, Balaban AT. Aust. J. Chem. 2007; 60: 173
- 22d Wang H, Li W.-G, Zeng K, Wu Y.-J, Zhang Y, Xu T.-L, Chen Y. Angew. Chem. Int. Ed. 2019; 58: 561
- 22e Gulandi A, Savoini A, Saporetti R, Lucarini M, Cozzi GC. Org. Chem. Front. 2018; 5: 1573
- 23a Lazzarotto M, Hammerer L, Hetmann M, Borg A, Schmermund L, Steiner L, Hartmann P, Belaj F, Kroutil W, Gruber K, Fuchs M. Angew. Chem. Int. Ed. 2019; 58: 8226
- 23b Xu J, Ye F, Zhang J, Xu Z, Zheng Z, Xu L. RSC Adv. 2016; 6: 45495
- 23c Deng W, Ye F, Bai X, Zheng Z, Cui Y, Xu L. ChemCatChem 2014; 7: 75
- 23d Choi J, Park C. Adv. Synth. Catal. 2018; 360: 3553
- 24a Knöpfel TF, Zarotti P, Ichikawa T, Carreira EM. J. Am. Chem. Soc. 2005; 127: 9682
- 24b Fujimori S, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4964
- 24c Tellitu I, Serna S, Domínguez E. ARKIVOC 2010; (iii): 7
- 24d Mishra S, Liu J, Aponick A. J. Am. Chem. Soc. 2017; 139: 3352
- 25a Fuentes-Pantoja FJ, Cordero-Vargas A. Eur. J. Org. Chem. 2022; e202200464
- 25b Triandafillidi I, Kokotou MG, Kokotos CG. Org. Lett. 2018; 20: 36
- 25c Rrapi M, Batsika CS, Nikitas NF, Tappin ND. C, Triandafillidi I, Renaud P, Kokotos CG. Chem. Eur. J. 2024; 30: e202400253
- 25d Li P, Liu Y, Wang L, Xiao J, Tao M. Adv. Synth. Catal. 2018; 360: 1673
- 26a Kiyani H, Bamdad M. Res. Chem. Intermed. 2018; 44: 2761
- 26b Nizhamu M, Alifu Z, Guo Z, Ablajan K. Res. Chem. Intermed. 2020; 46: 3217
- 26c Majumdar KC, Taher A, Nandi RK. Tetrahedron 2012; 68: 5693
- 26d Khare R, Pandey J, Smriti, Rupanwar R. Orient. J. Chem. 2019; 35: 423
- 26e van Beurden K, de Koning S, Molendijk D, van Schijndel J. Green Chem. Lett. Rev. 2020; 13: 349
- 26f Heravi MM, Janati F, Zadsirjan V. Monatsh. Chem. 2020; 151: 439
- 27a Butcher TS, Detty MR. J. Org. Chem. 1998; 63: 177
- 27b Rasolofonjatovo E, Provot O, Hamze A, Rodrigo J, Bignon J, Wdzieczak-Bakala J, Desravines D, Dubois J, Brion J, Alami M. Eur. J. Med. Chem. 2012; 52: 22
- 27c Yamashita K, Ktaoka K, Takeuchi S, Sugiura K. J. Org. Chem. 2016; 81: 11176
- 27d Li Y, Xu L, Jiang R, Liu H, Li Y. Eur. J. Org. Chem. 2013; 7076
- 27e Koehne I, Gerstel M, Bruhn C, Reithmaier JP, Benyoucef M, Pietschnig R. Inorg. Chem. 2021; 60: 5297
- 27f Imiołek M, Isenegger PG, Ng W, Khan A, Gouverneur V, Davis BG. ACS Cent. Sci. 2021; 7: 145
- 27g Fetzner S. Appl. Microbiol. Technol. 1998; 50: 633
- 27h Castro CE. Rev. Env. Contam. Toxicol. 1998; 155: 1
- 27i Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689
- 27j Beller M, Breindl C, Eichberger M, Hartung CG, Seayad J, Thiel OR, Tillack A, Trauthwein H. Synlett 2002; 1579
- 27k Kienle M, Dubbaka SR, Brade K, Knochel P. Eur. J. Org. Chem. 2007; 4166
- 27l Afanasyev OI, Kuckuk E, Usanov DL, Chusov D. Chem. Rev. 2019; 119: 11857
- 27m Ibrahim H, Togni A. J. Chem. Soc., Chem. Commun. 2004; 1147
- 27n Murphy CD. J. Appl. Microbiol. 2003; 94: 539
- 28a Kilic H, Adam W, Alsters PL. J. Org. Chem. 2009; 74: 1135
- 28b Kaku Y, Otsuka M, Ohno M. Chem. Lett. 1989; 18: 611
- 28c Argouarch G, Gibson CL, Stones G, Sherrington DC. Tetrahedron Lett. 2002; 43: 3795
- 28d Riss PJ, Rösch F. Org. Biomol. Chem. 2008; 6: 4567
- 28e Bhattacharya D, Ghorai A, Pal U, Maiti NC, Chattopadhyay P. RSC Adv. 2014; 4: 4155
- 28f Denneval C, Moldovan O, Baudequin C, Achelle S, Baldeck P, Plé N, Darabantu M, Ramondenc Y. Eur. J. Org. Chem. 2013; 5591
- 28g Nelson ME, Loktionova NA, Pegg AE, Moschel RC. J. Med. Chem. 2004; 47: 3887
- 28h Lubskyy A, Guo C, Chadwick RJ, Petri-Fink A, Bruns N, Pellizzoni MM. Chem. Commun. 2022; 58: 10989
- 28i He M, Wu Y, Li R, Wang Y, Liu C, Zhang B. Nat. Commun. 2023; 14: 5088
- 28j Chekan JR, McKinnie SM. K, Moore ML, Poplawski SG, Michael TP, Moore BS. Angew. Chem. Int. Ed. 2019; 131: 8542
- 28k Hoteite L, Allen BD. W, Elhajj EA, Meijer AJ. H. M, Harrity JP. A. Chem. Eur. J. 2024; 30: e202400116
- 28l Zhao J, Lichman BR, Ward JM, Hailes HC. Chem. Commun. 2018; 54: 1323
- 28m Lane BS, Burgess K. Chem. Rev. 2003; 103: 2457
- 28n Jørgensen KA. Chem. Rev. 1989; 89: 431
- 28o Stöckigt J, Antonchick AP, Wu F, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
Corresponding Author
Publikationsverlauf
Eingereicht: 16. August 2024
Angenommen nach Revision: 09. Dezember 2024
Artikel online veröffentlicht:
04. März 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Food Additives Data Book . Smith J, Hong-Shum L. Blackwell Science Ltd; Oxford: 2003: 646-647
- 2 The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals. Budavari S. Merck and Co., Inc; Rahway (NJ, USA): 1989: 1357
- 3 PubChem Compound Summary: Sodium Ascorbate . NIH National Library of Medicine, National Center for Biotechnology Information; Bethesda (MD, USA): 2025. https //pubchem.ncbi.nlm.nih.gov/compound/23667548 (accessed Feb 3, 2025)
- 4 ChEBI: 113451: Sodium Ascorbate . EMBL-EBI, Wellcome Genome Campus; Hinxton (UK): 2021. https //www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:113451
- 5 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
- 6 Wallentin C, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
- 7 Deena PL, Selvaraj SJ. K, J. T. Orient. J. Chem. 2022; 38: 1236
- 8a Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565
- 8b Feldman AK, Colasson B, Fokin VV. Org. Lett. 2004; 6: 3897
- 8c Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 633
- 8d Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 8e Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
- 8f Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
- 9a Joosten JA. F, Tholen NT. H, El Maate FA, Brouwer AJ, van Esse GW, Rijkers DT. S, Liskamp RM. J, Pieters RJ. Eur. J. Org. Chem. 2005; 3182
- 9b Kolarovic A, Schnürch M, Mihovilovic MD. J. Org. Chem. 2011; 76: 2613
- 9c Mindt TL, Schibli R. J. Org. Chem. 2007; 72: 10247
- 9d George GP. C, Pisaneschi F, Stevens E, Nguyen Q, Åberg O, Spivey AC, Aboagye EO. J. Labelled Compd. Radiopharm. 2013; 56: 679
- 9e Lidström P, Tierney J, Wathey B, Westman J. Tetrahedron 2001; 57: 9225
- 9f Bogdal D. Microwave-Assisted Organic Synthesis: One Hundred Reaction Procedures. Elsevier; Amsterdam: 2005
- 9g Khanna A, Dubey P, Sagar R. Curr. Org. Chem. 2021; 25: 2378
- 9h Ahmed Fuaad AA. H, Azmi F, Skwarczynski MToth I. Molecules 2013; 18: 13148
- 9i Li H, Aneja R, Chaiken I. Molecules 2013; 18: 9797
- 9j Agouram N, El Hadrami ElM, Bentama A. Molecules 2021; 26: 2937
- 10a Fletcher JT, Christensen JA, Villa EM. Tetrahedron Lett. 2017; 58: 4450
- 10b Ansejo-Sanz I, Claros T, González E, Pinacho-Olaciregui J, Verde-Sesto E, Pomposo JA. Mater. Lett. 2021; 304: 130622
- 10c Golliher AE, Tenorio AJ, Cornali BM, Monroy EY, Tello-Aburto R, Holguin FO, Maio WA. Tetrahedron Lett. 2021; 102: 132536
- 10d Pawar A, Gajare S, Jagdale A, Patil S, Chandane W, Rashinkar G, Patil S. Catal. Lett. 2021; 152: 1854
- 10e Aier M, Gayen FR, Puzari A. Sci. Rep. 2022; 12: 14613
- 10f Jankovič D, Virant M, Gazvoda M. J. Org. Chem. 2022; 87: 4018
- 10g Nanocatalysis: Synthesis and Applications . Polshettiwar V, Asefa T. John Wiley & Sons; Hoboken: 2013
- 10h Nanomagnetic Materials: Fabrication, Characterization and Application. Yamaguchi A, Hirohata A, Stadler B. Elsevier; Amsterdam: 2021
- 10i Gova J, Gun’ko YK. Nanomaterials 2014; 4: 222
- 11a Suzuki H, Miyoshi K, Shinoda M. Bull. Chem. Soc. Jpn. 1980; 53: 1765
- 11b Zhu W, Ma D. J. Chem. Soc., Chem. Commun. 2004; 888
- 11c Andersen J, Madsen U, Björkling F, Liang X. Synlett 2005; 2209
- 11d Whiting M, Fokin VV. Angew. Chem. Int. Ed. 2006; 45: 3157
- 11e Li Y, Flood AH. Angew. Chem. Int. Ed. 2008; 47: 2649
- 11f Quan Z, Xia H, Zhang Z, Da Y, Wang X. Chin. J. Chem. 2013; 31: 501
- 11g Shao B, Du H, Lu R, Luo Y, Zhang S. Chin. J. Chem. Eng. 2016; 24: 1000
- 11h Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 298
- 11i Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 12a Quan Z, Xia H, Zhang Z, Da Y, Wang X. Tetrahedron 2013; 69: 8368
- 12b Larsen AF, Ulven T. Chem. Commun. 2014; 50: 4997
- 12c Abdoli M, Mirjafary Z, Saeidian H, Kakanejadifard A. RSC Adv. 2015; 5: 44371
- 12d Liang Y, Wnuk SF. Molecules 2015; 20: 4874
- 12e Conejo-Garcia A, Cruz-López O, Gómez-Pérez V, Morales F, García-Rubiño ME, Kimatrai M, Núñez MC, Campos JM. Curr. Org. Chem. 2010; 14: 2463
- 12f Liang Y, Wnuk SF. C–H Bond Functionalization Strategies for Modification of Nucleosides. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Maiti D, Sanghvi YS. Elsevier; Amsterdam: 2018. 197
- 13a Bernhardson DJ, Widlicka DW, Singer RA. Org. Process Res. Dev. 2019; 8: 1538
- 13b Chen Y, Faver JC, Ku AF, Miklossy G, Riehle K, Bohren KM, Ucisik MN, Matzuk MM, Yu Z, Simmons N. Bioconjugate Chem. 2020; 31: 770
- 13c Kupietz K, Trouvé J, Roisnel T, Kahlal S, Gramage-Doria R. Eur. J. Org. Chem. 2023; 26: e202300621
- 13d Bevilacqua M, Giuso V, Rancan M, Armelao L, Graiff C, Baratta W, Di Marco V, Biffis A. Eur. J. Inorg. Chem. 2022; e202200484
- 13e Roemer M, Luck I, Proschogo N. Adv. Synth. Catal. 2022; 364: 2957
- 14a Cassidy MP, Raushel J, Fokin VV. Angew. Chem. Int. Ed. 2006; 45: 3154
- 14b Chen Y, Kamlet AS, Steinman JB, Liu DR. Nat. Chem. 2011; 3: 146
- 14c Chen J, Li K, Shon JS, Zimmerman SC. J. Am. Chem. Soc. 2020; 142: 4565
- 15a Bryant IR, Dyall LK. Aust. J. Chem. 1989; 42: 2275
- 15b Renault K, Sabot C, Renard P. Eur. J. Org. Chem. 2015; 7992
- 15c Guliyev R, Ozturk S, Kostareli Z, Akkaya EU. Angew. Chem. Int. Ed. 2011; 50: 9826
- 15d Trnka J, Blaikie FH, Smith RA. J, Murphy MP. Free Radic. Biol. Med. 2008; 44: 1406
- 15e Rajeswari PS, Nagarajan R, Sujith KP, Emmanuvel L. J. Organomet. Chem. 2021; 931: 121627
- 15f Anderson JE, Corrie JE. T. J. Chem. Soc., Perkin Trans. 2 1992; 1027
- 15g Ionita P, Whitwood AC, Gilbert BC. J. Chem. Soc., Perkin Trans. 2 2001; 1453
- 15h Bognár B, Jeko J, Kálai T, Hideg K. Dyes Pigm. 2010; 87: 218
- 15i Dixon DJ, Morejón OP. Recent Developments in the Reduction of Nitro and Nitroso Compounds . In Comprehensive Organic Synthesis II, Vol. 8. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 479
- 15j Orlandi M, Brenna D, Harms R, Jost S, Benaglia M. Org. Process Res. Dev. 2018; 22: 430
- 15k Sassykova LR, Aubakirov YA, Sendilvelan S, Tashmukhambetova ZhKh, Ryskaliyeva RG, Tyussyupova BB, Abildin TS. Orient. J. Chem. 2019; 35: 22
- 15l Gebicki JM, Nauser T, Domazou A, Steinmann D, Bounds PL, Koppenol WH. Amino Acids 2010; 39: 1131
- 16a Hamukoshi SS, Mama N, Ngororabanga JM. V, Schoeman S, Shafuda NH, Uahengo V, Hosten E. ARKIVOC 2023; 202312030
- 16b Palo-Nieto C, Sau A, Jeanneret R, Payard P, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Org. Lett. 2020; 22: 1991
- 16c Miura T, Moriyama D, Miyakawa S, Murakami M. Chem. Lett. 2020; 49: 1382
- 16d Deborye E, Eliseeva SV, Laurent S, Elst LV, Petoud S, Muller RN, Parac-Vogt TN. Eur. J. Inorg. Chem. 2013; 2629
- 16e Kitzig S, Rück-Braun K. J. Pept. Sci. 2017; 23: 567
- 16f Gotor-Fernández V, Gotor V. Enantioselective Acylation of Alcohol and Amine Reactions in Organic Synthesis. In Green Biocatalysis. Patel RN. John Wiley & Sons; Hoboken: 2016. 231
- 16g Piazzolla F, Temperini A. Tetrahedron Lett. 2018; 59: 2615
- 16h Taylor JE, Bull SD. N-Acylation Reactions of Amines. In Comprehensive Organic Synthesis II, Vol. 6. Knochel P, Molander GA. Elsevier; Amsterdam: 2014. 427
- 17a Ohata J, Ball ZT. Chem. Commun. 2017; 53: 1622
- 17b Keylor MH, Park JE, Wallentin C, Stephenson CR. J. Tetrahedron 2014; 70: 4264
- 17c Voutyritsa E, Triandafillidi I, Kokotos CG. ChemCatChem 2018; 10: 2466
- 17d Donald JR, Berrell SL. Chem. Sci. 2019; 10: 5832
- 17e Rossi L, Feroci M, Inesi A. Mini-Rev. Org. Chem. 2005; 2: 79
- 17f Ahmad MS, Pulidindi IN, Li C. New J. Chem. 2020; 44: 17177
- 18a Xie J, Li J, Weingand V, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2016; 22: 12646
- 18b Rahimidashaghoul K, Klimánková I, Hubálek M, Korecký M, Chvojka M, Pokorný D, Matoušek V, Fojtík L, Kavan D, Kukačka Z, Novák P, Beier P. Chem. Eur. J. 2019; 25: 15779
- 18c Delaude L, Demonceau A, Noels AF. Top. Organomet. Chem. 2004; 11: 155
- 18d Severin K. Chimia 2012; 66: 386
- 18e Alonso DA, Nájera C. Negishi Coupling . In Science of Synthesis: Water in Organic Synthesis . Kobayashi S. Georg Thieme Verlag KG; Stuttgart: 2012. 535
- 18f Bräse S, de Meijere A. Cross-Coupling of Organyl Halides with Alkenes: the Heck Reaction. In Metal-Catalyzed Cross-Coupling Reactions, Vol. 1. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004. 217
- 19a Matinek M, Korf M, Srogl J. Chem. Commun. 2010; 46: 4387
- 19b Yuan L, Zhang Z, Xu X, Zhou X. Synth. Commun. 2014; 44: 1007
- 19c Pandey AK, Naduthambi D, Thomas KM, Zondlo NJ. J. Am. Chem. Soc. 2013; 135: 4333
- 19d Kumpan K, Nathubhai A, Zhang C, Wood PJ, Lloyd MD, Haikarainen T, Thompson AS, Lehtiö L, Threadgill MD. Bioorg. Med. Chem. 2015; 23: 3013
- 19e Paine HA, Nathubhai A, Woon EC. Y, Sunderland PT, Wood PJ, Mahon MF, Lloyd MD, Thompson AS, Haikarainen T, Narwal M, Lehtiö L, Threadgill MD. Bioorg. Med. Chem. 2015; 23: 5891
- 20a Li N, Lim RK.V, Edwardraja S, Lin Q. J. Am. Chem. Soc. 2011; 133: 15316
- 20b Li N, Ramil CP, Lim RK. V, Lin Q. ACS Chem. Biol. 2015; 10: 379
- 20c Hauke S, Best M, Schmidt TT, Baalmann M, Krause A, Wombacher R. Bioconjugate Chem. 2014; 25: 1632
- 20d Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
- 20e Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 21a Gillman IG, Clark TN, Manderville RA. Chem. Res. Toxicol. 1999; 12: 1066
- 21b McIntyre NR, Lowe EW, Merkler DJ. J. Am. Chem. Soc. 2009; 131: 10308
- 21c Tozzi F, Ley SV, Kitching MO, Baxendale IR. Synlett 2010; 1919
- 21d Baud D, Saaidi P, Monfleur A, Harari M, Cuccaro J, Fossey A, Besnard M, Debard A, Mariage A, Pellouin V, Petit J, Salanoubat M, Weissenbach J, de Berardinis V, Zaparucha A. ChemCatChem 2014; 6: 3012
- 21e Hibi M, Kawashima T, Sokolov PM, Smirnov SV, Kodera T, Sugiyama M, Shimizu S, Yokozeki K, Ogawa J. Appl. Microbiol. Biotechnol. 2013; 97: 2467
- 21f See YY, Herrmann AT, Aihara Y, Baran PS. J. Am. Chem. Soc. 2015; 137: 13776
- 21g Zhao C, Ye Z, Ma Z, Wildman SA, Blaszczyk SA, Hu L, Guizei IA, Tang W. Nat. Commun. 2019; 10: 4015
- 22a Mu T, Wei B, Zhu D, Yu B. Nat. Commun. 2020; 11: 4371
- 22b Silveira-Dorta G, Monzón DM, Crisóstomo FP, Martín T, Martín VS, Carrillo R. Chem. Commun. 2015; 51: 7027
- 22c Ionita P, Tuna F, Andruh M, Constatinescu T, Balaban AT. Aust. J. Chem. 2007; 60: 173
- 22d Wang H, Li W.-G, Zeng K, Wu Y.-J, Zhang Y, Xu T.-L, Chen Y. Angew. Chem. Int. Ed. 2019; 58: 561
- 22e Gulandi A, Savoini A, Saporetti R, Lucarini M, Cozzi GC. Org. Chem. Front. 2018; 5: 1573
- 23a Lazzarotto M, Hammerer L, Hetmann M, Borg A, Schmermund L, Steiner L, Hartmann P, Belaj F, Kroutil W, Gruber K, Fuchs M. Angew. Chem. Int. Ed. 2019; 58: 8226
- 23b Xu J, Ye F, Zhang J, Xu Z, Zheng Z, Xu L. RSC Adv. 2016; 6: 45495
- 23c Deng W, Ye F, Bai X, Zheng Z, Cui Y, Xu L. ChemCatChem 2014; 7: 75
- 23d Choi J, Park C. Adv. Synth. Catal. 2018; 360: 3553
- 24a Knöpfel TF, Zarotti P, Ichikawa T, Carreira EM. J. Am. Chem. Soc. 2005; 127: 9682
- 24b Fujimori S, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4964
- 24c Tellitu I, Serna S, Domínguez E. ARKIVOC 2010; (iii): 7
- 24d Mishra S, Liu J, Aponick A. J. Am. Chem. Soc. 2017; 139: 3352
- 25a Fuentes-Pantoja FJ, Cordero-Vargas A. Eur. J. Org. Chem. 2022; e202200464
- 25b Triandafillidi I, Kokotou MG, Kokotos CG. Org. Lett. 2018; 20: 36
- 25c Rrapi M, Batsika CS, Nikitas NF, Tappin ND. C, Triandafillidi I, Renaud P, Kokotos CG. Chem. Eur. J. 2024; 30: e202400253
- 25d Li P, Liu Y, Wang L, Xiao J, Tao M. Adv. Synth. Catal. 2018; 360: 1673
- 26a Kiyani H, Bamdad M. Res. Chem. Intermed. 2018; 44: 2761
- 26b Nizhamu M, Alifu Z, Guo Z, Ablajan K. Res. Chem. Intermed. 2020; 46: 3217
- 26c Majumdar KC, Taher A, Nandi RK. Tetrahedron 2012; 68: 5693
- 26d Khare R, Pandey J, Smriti, Rupanwar R. Orient. J. Chem. 2019; 35: 423
- 26e van Beurden K, de Koning S, Molendijk D, van Schijndel J. Green Chem. Lett. Rev. 2020; 13: 349
- 26f Heravi MM, Janati F, Zadsirjan V. Monatsh. Chem. 2020; 151: 439
- 27a Butcher TS, Detty MR. J. Org. Chem. 1998; 63: 177
- 27b Rasolofonjatovo E, Provot O, Hamze A, Rodrigo J, Bignon J, Wdzieczak-Bakala J, Desravines D, Dubois J, Brion J, Alami M. Eur. J. Med. Chem. 2012; 52: 22
- 27c Yamashita K, Ktaoka K, Takeuchi S, Sugiura K. J. Org. Chem. 2016; 81: 11176
- 27d Li Y, Xu L, Jiang R, Liu H, Li Y. Eur. J. Org. Chem. 2013; 7076
- 27e Koehne I, Gerstel M, Bruhn C, Reithmaier JP, Benyoucef M, Pietschnig R. Inorg. Chem. 2021; 60: 5297
- 27f Imiołek M, Isenegger PG, Ng W, Khan A, Gouverneur V, Davis BG. ACS Cent. Sci. 2021; 7: 145
- 27g Fetzner S. Appl. Microbiol. Technol. 1998; 50: 633
- 27h Castro CE. Rev. Env. Contam. Toxicol. 1998; 155: 1
- 27i Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689
- 27j Beller M, Breindl C, Eichberger M, Hartung CG, Seayad J, Thiel OR, Tillack A, Trauthwein H. Synlett 2002; 1579
- 27k Kienle M, Dubbaka SR, Brade K, Knochel P. Eur. J. Org. Chem. 2007; 4166
- 27l Afanasyev OI, Kuckuk E, Usanov DL, Chusov D. Chem. Rev. 2019; 119: 11857
- 27m Ibrahim H, Togni A. J. Chem. Soc., Chem. Commun. 2004; 1147
- 27n Murphy CD. J. Appl. Microbiol. 2003; 94: 539
- 28a Kilic H, Adam W, Alsters PL. J. Org. Chem. 2009; 74: 1135
- 28b Kaku Y, Otsuka M, Ohno M. Chem. Lett. 1989; 18: 611
- 28c Argouarch G, Gibson CL, Stones G, Sherrington DC. Tetrahedron Lett. 2002; 43: 3795
- 28d Riss PJ, Rösch F. Org. Biomol. Chem. 2008; 6: 4567
- 28e Bhattacharya D, Ghorai A, Pal U, Maiti NC, Chattopadhyay P. RSC Adv. 2014; 4: 4155
- 28f Denneval C, Moldovan O, Baudequin C, Achelle S, Baldeck P, Plé N, Darabantu M, Ramondenc Y. Eur. J. Org. Chem. 2013; 5591
- 28g Nelson ME, Loktionova NA, Pegg AE, Moschel RC. J. Med. Chem. 2004; 47: 3887
- 28h Lubskyy A, Guo C, Chadwick RJ, Petri-Fink A, Bruns N, Pellizzoni MM. Chem. Commun. 2022; 58: 10989
- 28i He M, Wu Y, Li R, Wang Y, Liu C, Zhang B. Nat. Commun. 2023; 14: 5088
- 28j Chekan JR, McKinnie SM. K, Moore ML, Poplawski SG, Michael TP, Moore BS. Angew. Chem. Int. Ed. 2019; 131: 8542
- 28k Hoteite L, Allen BD. W, Elhajj EA, Meijer AJ. H. M, Harrity JP. A. Chem. Eur. J. 2024; 30: e202400116
- 28l Zhao J, Lichman BR, Ward JM, Hailes HC. Chem. Commun. 2018; 54: 1323
- 28m Lane BS, Burgess K. Chem. Rev. 2003; 103: 2457
- 28n Jørgensen KA. Chem. Rev. 1989; 89: 431
- 28o Stöckigt J, Antonchick AP, Wu F, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538



















































