Subscribe to RSS
DOI: 10.1055/s-0040-1722702
Clinical Assessment and Lesion-Specific Management of Orbital Vascular Malformations
Abstract
The systematic classification of vascular disease as proposed and refined by the International Society for the Study of Vascular Anomalies (ISSVA) divides vascular pathology first into tumors and malformations. Malformations are described as simple and complex, where simple malformations contain a single vascular system and complex malformations comprised of multiple vascular systems. Arteriovenous malformations are considered in terms of inflow characteristics which are primarily responsible for the key management challenges. Management utilizing endovascular embolization and/or surgical resection is often employed; however, recurrence can occur, particularly in diffuse cases. There may be an increasing role for systemic antiangiogenic therapy in such cases. Lymphaticovenous malformations are divided into the principle components on the lymphatic and venous sides for clarity of discussion. Lymphatic malformations are described morphologically as macrocystic and microcystic, and physiologically in terms of the processes responsible for growth. In both cases, surgical options are challenging and local therapeutics intended to close large luminal spaces in the case of macrocystic and to slow biological signaling for growth in microcystic. Venous malformations are described physiologically in terms of flow and distensibility, as volume plays a critical role in the limited space of the orbital cavity. Combined embolic-surgical approaches can be effective for management. More complicated, combined lesions can be managed by dividing the lesion into principal components and treating each appropriately.
Keywords
orbital neoplasms - arteriovenous malformations - venous malformations - lymphaticovenous malformation - lymphatic malformation - sclerotherapy - interventional neuroradiology - intravascular embolizationPublication History
Article published online:
23 March 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 International Society for the Study of Vascular Anomalies. ISSVA classification. Accessed May 5, 2020 at: issva.org/classification
- 2 Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 1982; 69 (03) 412-422
- 3 Garzon MC, Huang JT, Enjolras O, Frieden IJ. Vascular malformations: part I. J Am Acad Dermatol 2007; 56 (03) 353-370 , quiz 371–374
- 4 Jackson IT, Carreño R, Potparic Z, Hussain K. Hemangiomas, vascular malformations, and lymphovenous malformations: classification and methods of treatment. Plast Reconstr Surg 1993; 91 (07) 1216-1230
- 5 Kim AW, Kosmorsky GS. Arteriovenous communication in the orbit. J Neuroophthalmol 2000; 20 (01) 17-19
- 6 Warrier S, Prabhakaran VC, Valenzuela A, Sullivan TJ, Davis G, Selva D. Orbital arteriovenous malformations. Arch Ophthalmol 2008; 126 (12) 1669-1675
- 7 Mitchell EL, Taylor GI, Houseman ND, Mitchell PJ, Breidahl A, Ribuffo D. The angiosome concept applied to arteriovenous malformations of the head and neck. Plast Reconstr Surg 2001; 107 (03) 633-646
- 8 Qiao C, Richter GT, Pan W, Jin Y, Lin X. Extracranial arteriovenous malformations: from bedside to bench. Mutagenesis 2019; 34 (04) 299-306
- 9 Pardali E, Goumans MJ, ten Dijke P. Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 2010; 20 (09) 556-567
- 10 Govani FS, Shovlin CL. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet 2009; 17 (07) 860-871
- 11 Al-Olabi L, Polubothu S, Dowsett K. et al. Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. J Clin Invest 2018; 128 (04) 1496-1508
- 12 Tu J, Li Y, Hu Z. Notch1 and 4 signaling responds to an increasing vascular wall shear stress in a rat model of arteriovenous malformations. BioMed Res Int 2014; 2014: 368082
- 13 Wei T, Zhang H, Cetin N. et al. Elevated expression of matrix metalloproteinase-9 not matrix metalloproteinase-2 contributes to progression of extracranial arteriovenous malformation. Sci Rep 2016; 6: 24378
- 14 Flye MW, Jordan BP, Schwartz MZ. Management of congenital arteriovenous malformations. Surgery 1983; 94 (05) 740-747
- 15 Guilhem A, Fargeton AE, Simon AC. et al. Intra-venous bevacizumab in hereditary hemorrhagic telangiectasia (HHT): a retrospective study of 46 patients. PLoS One 2017; 12 (11) e0188943
- 16 Epperla N, Hocking W. Blessing for the bleeder: bevacizumab in hereditary hemorrhagic telangiectasia. Clin Med Res 2015; 13 (01) 32-35
- 17 Ou G, Galorport C, Enns R. Bevacizumab and gastrointestinal bleeding in hereditary hemorrhagic telangiectasia. World J Gastrointest Surg 2016; 8 (12) 792-795
- 18 Sadick H, Sadick M, Götte K. et al. Hereditary hemorrhagic telangiectasia: an update on clinical manifestations and diagnostic measures. Wien Klin Wochenschr 2006; 118 (3-4): 72-80
- 19 Al-Samkari H, Kasthuri RS, Parambil JG. et al. An international, multicenter study of intravenous bevacizumab for bleeding in hereditary hemorrhagic telangiectasia: the InHIBIT-Bleed study. Haematologica 2020; (e-pub ahead of print) DOI: 10.3324/haematol.2020.261859.
- 20 Chavan A, Schumann-Binarsch S, Luthe L. et al. Systemic therapy with bevacizumab in patients with hereditary hemorrhagic telangiectasia (HHT). Vasa 2013; 42 (02) 106-110
- 21 Iyer VN, Apala DR, Pannu BS. et al. Intravenous bevacizumab for refractory hereditary hemorrhagic telangiectasia-related epistaxis and gastrointestinal bleeding. Mayo Clin Proc 2018; 93 (02) 155-166
- 22 Lupu A, Stefanescu C, Treton X, Attar A, Corcos O, Bouhnik Y. Bevacizumab as rescue treatment for severe recurrent gastrointestinal bleeding in hereditary hemorrhagic telangiectasia. J Clin Gastroenterol 2013; 47 (03) 256-257
- 23 Dupuis-Girod S, Ginon I, Saurin JC. et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 2012; 307 (09) 948-955
- 24 Grob SR, Bokman C, Nathe C, Rootman DB, Feldman KA. Diagnosis and management of acute thrombosis in venous dominant orbital venolymphatic malformations. Ophthal Plast Reconstr Surg 2020; 36 (04) 359-364
- 25 Khan SN, Sepahdari AR. Orbital masses: CT and MRI of common vascular lesions, benign tumors, and malignancies. Saudi J Ophthalmol 2012; 26 (04) 373-383
- 26 Chung EM, Smirniotopoulos JG, Specht CS, Schroeder JW, Cube R. From the archives of the AFIP: Pediatric orbit tumors and tumorlike lesions: nonosseous lesions of the extraocular orbit. Radiographics 2007; 27 (06) 1777-1799
- 27 Harris GJ, Sakol PJ, Bonavolontà G, De Conciliis C. An analysis of thirty cases of orbital lymphangioma. Pathophysiologic considerations and management recommendations. Ophthalmology 1990; 97 (12) 1583-1592
- 28 Boulos PR, Harissi-Dagher M, Kavalec C, Hardy I, Codère F. Intralesional injection of Tisseel fibrin glue for resection of lymphangiomas and other thin-walled orbital cysts. Ophthal Plast Reconstr Surg 2005; 21 (03) 171-176
- 29 Hill III RH, Shiels II WE, Foster JA. et al. Percutaneous drainage and ablation as first line therapy for macrocystic and microcystic orbital lymphatic malformations. Ophthal Plast Reconstr Surg 2012; 28 (02) 119-125
- 30 Bisdorff A, Mulliken JB, Carrico J, Robertson RL, Burrows PE. Intracranial vascular anomalies in patients with periorbital lymphatic and lymphaticovenous malformations. AJNR Am J Neuroradiol 2007; 28 (02) 335-341
- 31 Chen EY, Hostikka SL, Oliaei S, Duke W, Schwartz SM, Perkins JA. Similar histologic features and immunohistochemical staining in microcystic and macrocystic lymphatic malformations. Lymphat Res Biol 2009; 7 (02) 75-80
- 32 Nassiri N, Rootman J, Rootman DB, Goldberg RA. Orbital lymphaticovenous malformations: current and future treatments. Surv Ophthalmol 2015; 60 (05) 383-405
- 33 Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999; 98 (06) 769-778
- 34 Wigle JT, Chowdhury K, Gruss P, Oliver G. Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 1999; 21 (03) 318-322
- 35 Skobe M, Hawighorst T, Jackson DG. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7 (02) 192-198
- 36 Mandriota SJ, Jussila L, Jeltsch M. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20 (04) 672-682
- 37 Martinez-Corral I, Zhang Y, Petkova M. et al. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat Commun 2020; 11 (01) 2869
- 38 Itakura E, Yamamoto H, Oda Y, Furue M, Tsuneyoshi M. VEGF-C and VEGFR-3 in a series of lymphangiomas: is superficial lymphangioma a true lymphangioma?. Virchows Arch 2009; 454 (03) 317-325
- 39 Sidle DM, Maddalozzo J, Meier JD, Cornwell M, Stellmach V, Crawford SE. Altered pigment epithelium-derived factor and vascular endothelial growth factor levels in lymphangioma pathogenesis and clinical recurrence. Arch Otolaryngol Head Neck Surg 2005; 131 (11) 990-995
- 40 Wu JK, Kitajewski C, Reiley M. et al. Aberrant lymphatic endothelial progenitors in lymphatic malformation development. PLoS One 2015; 10 (02) e0117352
- 41 Chen CY, Bertozzi C, Zou Z. et al. Blood flow reprograms lymphatic vessels to blood vessels. J Clin Invest 2012; 122 (06) 2006-2017
- 42 Schick U, Hassler W. Treatment of deep vascular orbital malformations. Clin Neurol Neurosurg 2009; 111 (10) 801-807
- 43 Parentin F, Borzaghini L, Perissutti P. The role of ultrasonography in the diagnosis of orbital lymphangiomas. Ophthalmologica 2001; 215 (03) 238-240
- 44 Tunç M, Sadri E, Char DH. Orbital lymphangioma: an analysis of 26 patients. Br J Ophthalmol 1999; 83 (01) 76-80
- 45 Rootman J, Kao SC, Graeb DA. Multidisciplinary approaches to complicated vascular lesions of the orbit. Ophthalmology 1992; 99 (09) 1440-1446
- 46 Schwarcz RM, Ben Simon GJ, Cook T, Goldberg RA. Sclerosing therapy as first line treatment for low flow vascular lesions of the orbit. Am J Ophthalmol 2006; 141 (02) 333-339
- 47 Da Ros V, Iacobucci M, Puccinelli F, Spelle L, Saliou G. Lymphographic-like technique for the treatment of microcystic lymphatic malformation components of <3 mm. AJNR Am J Neuroradiol 2018; 39 (02) 350-354
- 48 Abdelaziz O, Hassan F, Elessawy K, Emad-Eldin S, Essawy RE. Image-guided percutaneous bleomycin and bevacizumab sclerotherapy of orbital lymphatic malformations in children. Cardiovasc Intervent Radiol 2019; 42 (03) 433-440
- 49 Liang WC, Wu X, Peale FV. et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 2006; 281 (02) 951-961
- 50 Mustak H, Ugradar S, Goldberg R, Rootman D. Bevacizumab and Bleomycin combination for treatment of orbital lymphatico-venous malformation recalcitrant to sclerosing therapy alone. Clin Exp Ophthalmol 2018; 46 (07) 815-816
- 51 Luks VL, Kamitaki N, Vivero MP. et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr 2015; 166 (04) 1048-1054.e1–5
- 52 Luo Y, Liu L, Rogers D. et al. Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression. Neoplasia 2012; 14 (03) 228-237
- 53 Adams DM, Trenor III CC, Hammill AM. et al. Efficacy and Safety of Sirolimus in the Treatment of Complicated Vascular Anomalies. Pediatrics 2016; 137 (02) e20153257
- 54 Lackner H, Karastaneva A, Schwinger W. et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr 2015; 174 (12) 1579-1584
- 55 Gildener-Leapman JR, Rosenberg JB, Barmettler A. Proptosis reduction using sirolimus in a child with an orbital vascular malformation and blue rubber bleb nevus syndrome. Ophthalmic Plast Reconstr Surg 2017; 33 (3S suppl 1): S143-S146
- 56 Lagrèze WA, Joachimsen L, Gross N, Taschner C, Rössler J. Sirolimus-induced regression of a large orbital lymphangioma. Orbit 2019; 38 (01) 79-80
- 57 Kahana A, Lucarelli MJ, Grayev AM, Van Buren JJ, Burkat CN, Gentry LR. Noninvasive dynamic magnetic resonance angiography with time-resolved imaging of contrast kinetics (TRICKS) in the evaluation of orbital vascular lesions. Arch Ophthalmol 2007; 125 (12) 1635-1642
- 58 Heran MKS, Rootman J, Sangha BS, Yeo JM. Dynamic arterial and Valsalva-augmented venous phase multi-detector computed tomography for orbital vascular lesions: a pictorial review. Ophthal Plast Reconstr Surg 2014; 30 (02) 180-185
- 59 De Maria L, De Sanctis P, Tollefson M. et al. Sclerotherapy for low-flow vascular malformations of the orbital and periocular regions: systematic review and meta-analysis. Surv Ophthalmol 2020; 65 (01) 41-47
- 60 Rootman J, Heran MK, Graeb DA. Vascular malformations of the orbit: classification and the role of imaging in diagnosis and treatment strategies*. Ophthal Plast Reconstr Surg 2014; 30 (02) 91-104
- 61 Ramesh S, Duckwiler G, Goldberg RA, Rootman DB. Multimodality management of complex periorbital venolymphatic malformations. Ophthal Plast Reconstr Surg 2019; 35 (04) 387-398
- 62 Wu EM, El Ahmadieh TY, McDougall CM. et al. Embolization of brain arteriovenous malformations with intent to cure: a systematic review. J Neurosurg 2019; 132 (02) 388-399
- 63 Elsenousi A, Aletich VA, Alaraj A. Neurological outcomes and cure rates of embolization of brain arteriovenous malformations with n-butyl cyanoacrylate or Onyx: a meta-analysis. J Neurointerv Surg 2016; 8 (03) 265-272