Subscribe to RSS
DOI: 10.1055/s-0041-103414
Kurzer, gestörter und unregelmäßiger Schlaf: Die schädlichen Auswirkungen auf den menschlichen Stoffwechsel
On the detrimental metabolic impact of short, disturbed and erratic sleepPublication History
Publication Date:
25 August 2015 (online)
Zusammenfassung
In unserer modernen 24-Stunden-Gesellschaft zeigt sich ein zunehmender Trend zu verkürztem und unregelmäßigem Schlaf. Parallel hierzu nimmt die Prävalenz des metabolischen Syndroms mit seinen Kernkomponenten Adipositas und Typ-2-Diabetes mellitus stetig zu, wie eine Vielzahl epidemiologischer Arbeiten belegen. Experimentelle kurzzeitige Interventionsstudien weisen auf einen kausalen Zusammenhang zwischen Schlafdauer und -qualität und Energiemetabolismus hin und haben zugrundeliegende Mechanismen identifiziert. Insbesondere Veränderungen in der neuroendokrinen Regulation des Glukosestoffwechsels, der zirkadianen Rhythmik sowie von Appetit und Essverhalten scheinen die negativen Auswirkungen von unzureichendem Schlaf auf den Energiehaushalt zu vermitteln. Auch wenn langfristige Interventionsstudien bislang fehlen, kann davon ausgegangen werden, dass eine Verbesserung der Schlafhygiene einen attraktiven Ansatz in der Prävention und Therapie metabolischer Erkrankungen darstellt.
Abstract
Our modern 24-hour society shows an increasing trend towards shortened and erratic sleep. A large number of epidemiological studies indicate that in parallel, the prevalence of the metabolic syndrome and its key components, obesity and type 2 diabetes mellitus, is on the rise. Short-term interventional experiments point to a causal relationship between sleep duration and quality and energy metabolism and have identified underlying mechanisms. In particular, changes in the neuroendocrine regulation of glucose metabolism, in circadian rhythmicity as well as in the regulation of appetite and eating behavior are assumed to mediate the detrimental effect of insufficient sleep on energy balance. Although long-term interventional studies are still sparse, existing evidence suggests that improving sleep hygiene represents an attractive approach for the prevention and treatment of metabolic diseases.
-
Literatur
- 1 Luyster FS, Strollo Jr PJ, Zee PC, Walsh JK. Boards of Directors of the American Academy of Sleep Medicine and the Sleep Research Society. Sleep: a health imperative. Sleep 2012; 35: 727-734
- 2 Czeisler CA. Impact of Sleepiness and Sleep Deficiency on Public Health – Utility of Biomarkers. J Clin Sleep Med 2011; 7 (5 Suppl): 6-8
- 3 Schmid SM, Hallschmid M, Schultes B. The metabolic burden of sleep loss. Lancet Diabetes Endocrinol 2015; 3: 52-62
- 4 Hall MH, Muldoon MF, Jennings JR, Buysse DJ et al. Self-Reported Sleep Duration is Associated with the Metabolic Syndrome in Midlife Adults. Sleep 2008; 31: 635-643
- 5 Hung H-C, Yang Y-C, Ou H-Y et al. The association between self-reported sleep quality and overweight in a Chinese population. Obes Silver Spring Md 2013; 21: 486-492
- 6 Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating Night Shift Work and Risk of Type 2 Diabetes: Two Prospective Cohort Studies in Women. PLoS Med 2011; 8
- 7 Schmid SM, Hallschmid M, Jauch-Chara K et al. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr 2009; 90: 1476-1482
- 8 Benedict C, Hallschmid M, Lassen A et al. Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr 2011; 93: 1229-1236
- 9 Spiegel K, Tasali E, Penev P, Cauter EV. Brief Communication: Sleep Curtailment in Healthy Young Men Is Associated with Decreased Leptin Levels, Elevated Ghrelin Levels, and Increased Hunger and Appetite. Ann Intern Med 2004; 141: 846-850
- 10 Schmid SM, Hallschmid M, Jauch-Chara K et al. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res 2008; 17: 331-334
- 11 Benedict C, Brooks SJ, O’Daly OG et al. Acute Sleep Deprivation Enhances the Brain’s Response to Hedonic Food Stimuli: An fMRI Study. J Clin Endocrinol Metab 2012; 97: E443-E447
- 12 Broussard JL, Ehrmann DA, Van Cauter E et al. Impaired Insulin Signaling in Human Adipocytes After Experimental Sleep Restriction – A Randomized, Crossover Study. Ann Intern Med 2012; 157: 549-557
- 13 Alberti KGMM, Eckel RH, Grundy SM et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120: 1640-1645
- 14 Hall MH, Okun ML, Sowers M et al. Sleep Is Associated with the Metabolic Syndrome in a Multi-Ethnic Cohort of Midlife Women: The SWAN Sleep Study. Sleep 2012; 35: 783-790
- 15 Jennings JR, Muldoon MF, Hall M et al. Self-reported sleep quality is associated with the metabolic syndrome. Sleep 2007; 30: 219-223
- 16 Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med 2010; 71: 1027-1036
- 17 Puttonen S, Viitasalo K, Härmä M. The relationship between current and former shift work and the metabolic syndrome. Scand J Work Environ Health 2012; 38: 343-348
- 18 Guo Y, Liu Y, Huang X et al. The Effects of Shift Work on Sleeping Quality, Hypertension and Diabetes in Retired Workers. PLoS ONE 2013; 8
- 19 Levi F, Schibler U. Circadian Rhythms: Mechanisms and Therapeutic Implications. Annu Rev Pharmacol Toxicol 2007; 47: 593-628
- 20 Cappuccio FP, Taggart FM, Kandala N-B et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 2008; 31: 619-626
- 21 Gangwisch JE, Heymsfield SB, Boden-Albala B et al. Sleep Duration as a Risk Factor for Diabetes Incidence in a Large US Sample. Sleep 2007; 30: 1667-1673
- 22 Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Quantity and Quality of Sleep and Incidence of Type 2 Diabetes: A systematic review and meta-analysis. Diabetes Care 2009; 33: 414-420
- 23 Kaneita Y, Uchiyama M, Yoshiike N, Ohida T. Associations of usual sleep duration with serum lipid and lipoprotein levels. Sleep 2008; 31: 645
- 24 Bjorvatn B, Sagen IM, Øyane N et al. The association between sleep duration, body mass index and metabolic measures in the Hordaland Health Study. J Sleep Res 2007; 16: 66-76
- 25 Gangwisch JE, Malaspina D, Babiss LA et al. Short Sleep Duration as a Risk Factor for Hypercholesterolemia: Analyses of the National Longitudinal Study of Adolescent Health. Sleep 2010; 33: 956-961
- 26 Gangwisch JE, Feskanich D, Malaspina D et al. Sleep Duration and Risk for Hypertension in Women: Results from The Nurses’ Health Study. Am J Hypertens 2013; 26: 903-911
- 27 Meng L, Zheng Y, Hui R. The relationship of sleep duration and insomnia to risk of hypertension incidence: a meta-analysis of prospective cohort studies. Hypertens Res Off J Jpn Soc Hypertens 2013; 36: 985-995
- 28 Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Sleep Duration and All-Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Sleep 2010; 33: 585-592
- 29 Grandner MA, Hale L, Moore M, Patel NP. Mortality associated with short sleep duration: The evidence, the possible mechanisms, and the future. Sleep Med Rev 2010; 14: 191-203
- 30 Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354: 1435-1439
- 31 Leproult R, Van Cauter E. Role of Sleep and Sleep Loss in Hormonal Release and Metabolism. Endocr Dev 2010; 17: 11-21
- 32 Donga E, van Dijk M, van Dijk JG et al. A Single Night of Partial Sleep Deprivation Induces Insulin Resistance in Multiple Metabolic Pathways in Healthy Subjects. J Clin Endocrinol Metab 2010; 95: 2963-2968
- 33 Nedeltcheva AV, Kessler L, Imperial J, Penev PD. Exposure to Recurrent Sleep Restriction in the Setting of High Caloric Intake and Physical Inactivity Results in Increased Insulin Resistance and Reduced Glucose Tolerance. J Clin Endocrinol Metab 2009; 94: 3242-3250
- 34 Schmid SM, Hallschmid M, Jauch-Chara K et al. Disturbed Glucoregulatory Response to Food Intake After Moderate Sleep Restriction. Sleep 2011; 34: 371-377
- 35 Buxton OM, Pavlova M, Reid EW et al. Sleep Restriction for 1 Week Reduces Insulin Sensitivity in Healthy Men. Diabetes 2010; 59: 2126-2133
- 36 Stamatakis KA, Punjabi NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. CHEST J 2010; 137: 95-101
- 37 Klingenberg L, Chaput J-P, Holmbäck U et al. Acute Sleep Restriction Reduces Insulin Sensitivity in Adolescent Boys. Sleep 2013; 36: 1085-1090
- 38 Schmid SM, Jauch-Chara K, Hallschmid M, Schultes B. Mild Sleep Restriction Acutely Reduces Plasma Glucagon Levels in Healthy Men. J Clin Endocrinol Metab 2009; 94: 5169-5173
- 39 Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci 2009; 106: 4453-4458
- 40 Buxton OM, Cain SW, O’Connor SP et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 2012; 4: 129ra43
- 41 Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci 2008; 105: 1044-1049
- 42 Herzog N, Jauch-Chara K, Hyzy F et al. Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men. Psychoneuroendocrinology 2013; 38: 2075-2082
- 43 Spiegel K, Leproult R, L’Hermite-Balériaux M et al. Leptin Levels Are Dependent on Sleep Duration: Relationships with Sympathovagal Balance, Carbohydrate Regulation, Cortisol, and Thyrotropin. J Clin Endocrinol Metab 2004; 89: 5762-5771
- 44 Maquet P, Dive D, Salmon E et al. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Res 1990; 513: 136-143
- 45 Killick R, Banks S, Liu PY. Implications of Sleep Restriction and Recovery on Metabolic Outcomes. J Clin Endocrinol Metab 2012; 97: 3876-3890
- 46 Morselli LL, Guyon A, Spiegel K. Sleep and metabolic function. Pflugers Arch 2012; 463: 139-160
- 47 Bosy-Westphal A, Hinrichs S, Jauch-Chara K et al. Influence of Partial Sleep Deprivation on Energy Balance and Insulin Sensitivity in Healthy Women. Obes Facts 2008; 1: 266-273
- 48 Brondel L, Romer MA, Nougues PM et al. Acute partial sleep deprivation increases food intake in healthy men. Am J Clin Nutr 2010; 91: 1550-1559
- 49 Nedeltcheva AV, Kilkus JM, Imperial J et al. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr 2009; 89: 126-133
- 50 St-Onge M-P, Roberts AL, Chen J et al. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals123. Am J Clin Nutr 2011; 94: 410-416
- 51 Markwald RR, Melanson EL, Smith MR et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci U. S. A. 2013; 110: 5695-5700
- 52 Beebe DW, Simon S, Summer S et al. Dietary intake following experimentally restricted sleep in adolescents. Sleep 2013; 36: 827-834
- 53 Hogenkamp PS, Nilsson E, Nilsson VC et al. Acute sleep deprivation increases portion size and affects food choice in young men. Psychoneuroendocrinology 2013; 38: 1668-1674
- 54 Spaeth AM, Dinges DF, Goel N. Effects of Experimental Sleep Restriction on Weight Gain, Caloric Intake, and Meal Timing in Healthy Adults. Sleep 2013; 36: 981-990
- 55 Nedeltcheva AV, Kilkus JM, Imperial J et al. Insufficient Sleep Undermines Dietary Efforts to Reduce Adiposity. Ann Intern Med 2010; 153: 435-441
- 56 Rodríguez A, Gómez-Ambrosi J, Catalán V. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes 2009; 33: 541-552
- 57 Nogueiras R, Tschop MH, Zigman JM. CNS Regulation of Energy Metabolism: Ghrelin versus Leptin. Ann N Y Acad Sci 2008; 1126
- 58 Castañeda TR, Tong J, Datta R et al. Ghrelin in the regulation of body weight and metabolism. Front Neuroendocrinol 2010; 31: 44-60
- 59 Calvin AD, Carter RE, Adachi T et al. Effects of experimental sleep restriction on caloric intake and activity energy expenditure. Chest 2013; 144: 79-86
- 60 Magee CA, Huang X-F, Iverson DC, Caputi P. Acute sleep restriction alters neuroendocrine hormones and appetite in healthy male adults. Sleep Biol Rhythms 2009; 7: 125-127
- 61 Morton GJ, Cummings DE, Baskin DG et al. Central nervous system control of food intake and body weight. Nature 2006; 443: 289-295
- 62 Simpson NS, Banks S, Dinges DF. Sleep Restriction Is Associated With Increased Morning Plasma Leptin Concentrations, Especially in Women. Biol Res Nurs 2010; 12: 47-53
- 63 Omisade A, Buxton OM, Rusak B. Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol Behav 2010; 99: 651-656
- 64 Reynolds AC, Dorrian J, Liu PY et al. Impact of Five Nights of Sleep Restriction on Glucose Metabolism, Leptin and Testosterone in Young Adult Men. PLoS ONE 2012; 7: e41218
- 65 Hayes AL, Xu F, Babineau D, Patel SR. Sleep duration and circulating adipokine levels. Sleep 2011; 34: 147
- 66 Penev PD. Update on Energy Homeostasis and Insufficient Sleep. J Clin Endocrinol Metab 2012; 97: 1792-1801
- 67 Greer SM, Goldstein AN, Walker MP. The impact of sleep deprivation on food desire in the human brain. Nat Commun 2013; 4: 2259
- 68 St-Onge M-P, McReynolds A, Trivedi ZB et al. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am J Clin Nutr 2012; 95: 818-824
- 69 St-Onge M-P, Wolfe S, Sy M et al. Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals. Int J Obes 2014; 38: 411-416
- 70 Roehrs T, Turner L, Roth T. Effects of sleep loss on waking actigraphy. Sleep 2000; 23: 793-797
- 71 Bromley LE, Booth JN, Kilkus JM et al. Sleep Restriction Decreases the Physical Activity of Adults at Risk for Type 2 Diabetes. Sleep 2012; 35: 977-984
- 72 Booth JN, Bromley LE, Darukhanavala AP et al. Reduced physical activity in adults at risk for type 2 diabetes who curtail their sleep. Obes Silver Spring Md 2012; 20: 278-284
- 73 Klingenberg L, Chaput J-P, Sjödin A. Reply to L Bennedsen et al. Am J Clin Nutr 2013; 97: 446-447
- 74 Jung CM, Melanson EL, Frydendall EJ et al. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 2010; 589: 235-244
- 75 Moller-Levet CS, Archer SN, Bucca G et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U. S. A. 2013; 110: E1132-E1141
- 76 Baldo BA, Hanlon EC, Obermeyer W et al. Upregulation of Gene Expression in Reward-Modulatory Striatal Opioid Systems by Sleep Loss. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 2013;
- 77 Martins PJF, Marques MS, Tufik S, D’Almeida V. Orexin activation precedes increased NPY expression, hyperphagia, and metabolic changes in response to sleep deprivation. Am J Physiol – Endocrinol Metab 2010; 298: E726-E734
- 78 Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007; 8: 171-181
- 79 Benedict C, Kern W, Schmid SM et al. Early morning rise in hypothalamic–pituitary–adrenal activity: A role for maintaining the brain’s energy balance. Psychoneuroendocrinology 2009; 34: 455-462
- 80 Sharma SK, Agrawal S, Damodaran D et al. CPAP for the Metabolic Syndrome in Patients with Obstructive Sleep Apnea. N Engl J Med 2011; 365: 2277-2286
- 81 Arora T, Hussain S, Hubert Lam K-B et al. Exploring the complex pathways among specific types of technology, self-reported sleep duration and body mass index in UK adolescents. Int J Obes 2013; 37: 1254-1260
- 82 Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 2015;