Subscribe to RSS
DOI: 10.1055/s-0041-108262
Chemosensorisch evozierte Atemänderungen während zweier Propofol-induzierter Sedierungsstadien
Chemosensory Evoked Changes of Breathing Pattern During Propofol-induced SedationPublication History
Publication Date:
08 December 2015 (online)
Zusammenfassung
Hintergrund: Die affektive Valenz eines Riechreizes wird in seiner respiratorischen Antwort kodiert. Unangenehme Gerüche verkürzen im Wach- und Schlafzustand die Dauer der Inspiration des ersten Reizatemzuges. Unter medikamentös induzierter Sedierung ist das bisher nicht untersucht worden.
Material und Methoden: 13 ASA 1/2-Patienten beiderlei Geschlechts wurden unter Überwachung der Vitalfunktionen während „tiefer“ (EEG-basierter Bispektraler Index: BIS≤60) bzw. „moderater“ (BIS>60) Sedierung mit Propofol bei erhaltener Spontanatmung chemosensorisch (H2S und CO2) inspirationssynchron über ein Fluss-Olfaktometer gereizt. Die Dauer der In- und Exspiration wurde für 5 Atemzüge vor und für 2 Atemzüge nach der Reizapplikation analysiert.
Ergebnisse: Im Sedierungsstadium BIS≤60 ließen sich nur mit CO2 respiratorische Reaktionen auslösen. Bei moderater Sedierung ließen sich auch mit H2S-Reizen Atemänderungen evozieren. Während einer moderaten Sedierung waren die durch eine CO2-Reizung bzw. durch eine H2S-Reizung ausgelösten respiratorischen Reaktionen häufiger mit ihrer Inspirationsdauer verlängert als verkürzt.
Schlussfolgerungen: Olfaktorische Reize verändern die Atmung nur während moderater Sedierung, trigeminale Reize evozieren Atemänderungen sowohl während moderater als auch tiefer Propofol-induzierter Sedierung. Im Gegensatz zum Wach- und Schlafzustand verlängert sich während moderater Sedierung bei einer H2S-Reizung häufig die Inspiration.
Abstract
Background: The affective valence of an olfactory stimulus will be encoded in its respiratory response. Unpleasant odors shorten the inhalation of the first stimulated breaths in wakefulness and sleep. The aim of the present study was to assess the effekt of intravenous anesthetic propofol on the chemosensory evoked changes of breathing pattern.
Material and methods: 13 ASA 1/2 patients got intranasal chemosensory stimuli (H2S and CO2) by flow-olfactometer during “deep” (EEG-based bispectral analysis, BIS:≤60) and “moderate” (BIS>60) propofol-induced sedation with preserved spontaneous breathing. The duration of the in- and exhalation was analyzed for 5 breaths before and for 2 breaths after the onset of stimulation.
Results: During deep sedation respiratory reactions were observed only by CO2 irritation. During moderate sedation respiratory responses were evoked by H2S stimuli, too. In moderate sedation extensions of the inhalations of the first breath after both the unpleasant pure olfactory H2S stimuli and the trigeminal stimuli were more frequent than reductions.
Conclusion: Olfactory stimuli change the breathing only during moderate sedation, trigeminal stimuli during deep and moderate propofol-induced sedation. In opposite to both wakefulness and sleep the duration of inhalation is often extended by H2S-stimuli during moderate sedation.
-
Literatur
- 1 Gudziol H, Wajnert B, Forster G. How do pleasant and unpleasant odours change the breathing pattern?. Laryngorhinootologie 2006; 85: 567-572
- 2 Frank RA, Gesteland RC, Bailie J, Rybalsky K, Seiden A, Dulay MF. Characterization of the sniff magnitude test. Arch Otolaryngol Head Neck Surg 2006; 132: 532-536
- 3 Stuck BA, Stieber K, Frey S, Freiburg C, Hormann K, Maurer JT, Hummel T. Arousal responses to olfactory or trigeminal stimulation during sleep. Sleep 2007; 30: 506-510
- 4 Arzi A, Sela L, Green A, Givaty G, Dagan Y, Sobel N. The influence of odorants on respiratory patterns in sleep. Chem Senses 2010; 35: 31-40
- 5 Arzi A, Shedlesky L, Ben-Shaul M, Nasser K, Oksenberg A, Hairston IS, Sobel N. Humans can learn new information during sleep. Nat Neurosci 2012; 15: 1460-1465
- 6 Arzi A, Holtzman Y, Samnon P, Eshel N, Harel E, Sobel N. Olfactory aversive conditioning during sleep reduces cigarette-smoking behavior. J Neurosci 2014; 34: 15382-15393
- 7 Arzi A, Rozenkrantz L, Holtzman Y, Secundo L, Sobel N. Sniffing patterns uncover implicit memory for undetected odors. Curr Biol 2014; 24: R263-R264
- 8 Van Aken H, Biermann E, Martin J. Entschließung zur Analgosedierung für diagnostische und therapeutische Verfahren bei Erwachsenen. Anästh Intensivmed 2010; 51: 598-602
- 9 Hummel T, Kobal G, Gudziol H, Mackay-Sim A. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 2007; 264: 237-243
- 10 Adrian ED. Olfactory reactions in the brain of the hedgehog. J Physiol 1942; 100: 459-473
- 11 Gudziol V, Lotsch J, Hahner A, Zahnert T, Hummel T. Clinical significance of results from olfactory testing. Laryngoscope 2006; 116: 1858-1863
- 12 Laing DG. Characterisation of human behaviour during odour perception. Perception 1982; 11: 221-230
- 13 Gudziol H, Stark D, Lehnich H, Bitter T, Guntinas-Lichius O. Hyposmics have less evoked respiratory orienting reactions than normosmics. Laryngorhinootologie 2010; 89: 477-482
- 14 Johnson BN, Russell C, Khan RM, Sobel N. A comparison of methods for sniff measurement concurrent with olfactory tasks in humans. Chem Senses 2006; 31: 795-806
- 15 Mainland J, Sobel N. The sniff is part of the olfactory percept. Chem Senses 2006; 31: 181-196
- 16 Badia P, Wesensten N, Lammers W, Culpepper J, Harsh J. Responsiveness to olfactory stimuli presented in sleep. Physiol Behav 1990; 48: 87-90
- 17 Carskadon MA, Herz RS. Minimal olfactory perception during sleep: why odor alarms will not work for humans. Sleep 2004; 27: 402-405
- 18 Ravesloot MJ, de Vries N. One hundred consecutive patients undergoing drug-induced sleep endoscopy: results and evaluation. Laryngoscope 2011; 121: 2710-2716
- 19 Ramsay MA, Newman KB, Jacobson RM, Richardson CT, Rogers L, Brown BJ, Hein HA, De Vol EB, Daoud YA. Sedation levels during propofol administration for outpatient colonoscopies. Proc (Bayl Univ Med Cent) 2014; 27: 12-15
- 20 Bouillon T, Bruhn J, Radu-Radulescu L, Andresen C, Cohane C, Shafer SL. A model of the ventilatory depressant potency of remifentanil in the non-steady state. Anesthesiology 2003; 99: 779-787
- 21 Nieuwenhuijs DJ, Olofsen E, Romberg RR, Sarton E, Ward D, Engbers F, Vuyk J, Mooren R, Teppema LJ, Dahan A. Response surface modeling of remifentanil-propofol interaction on cardiorespiratory control and bispectral index. Anesthesiology 2003; 98: 312-322
- 22 Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, Shafer SL. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology 2004; 100: 1353-1372
- 23 Yufune S, Takamatsu I, Masui K, Kazama T. Effect of remifentanil on plasma propofol concentration and bispectral index during propofol anaesthesia. Br J Anaesth 2011; 106: 208-214
- 24 Hickey KS, Martin DF, Chuidian FX. Propofol-induced seizure-like phenomena. J Emerg Med 2005; 29: 447-449
- 25 Iselin-Chaves IA, Flaishon R, Sebel PS, Howell S, Gan TJ, Sigl J, Ginsberg B, Glass PS. The effect of the interaction of propofol and alfentanil on recall, loss of consciousness, and the Bispectral Index. Anesthesia & Analgesia 1998; 87: 949-955
- 26 Vasileiou I, Xanthos T, Koudouna E, Perrea D, Klonaris C, Katsargyris A, Papadimitriou L. Propofol: a review of its non-anaesthetic effects. Eur J Pharmacol 2009; 605: 1-8
- 27 Kroeger D, Amzica F. Hypersensitivity of the Anesthesia-Induced Comatose Brain. The Journal of Neuroscience 2007; 27: 10597-10607
- 28 Yli-Hankala A, Jantti V, Pyykko I, Lindgren L. Vibration stimulus induced EEG bursts in isoflurane anaesthesia. Electroencephalogr Clin Neurophysiol 1993; 87: 215-220
- 29 Hofbauer RK, Fiset P, Plourde G, Backman SB, Bushnell MC. Dose-dependent effects of propofol on the central processing of thermal pain. Anesthesiology 2004; 100: 386-394
- 30 Heinke W, Kenntner R, Gunter TC, Sammler D, Olthoff D, Koelsch S. Sequential effects of increasing propofol sedation on frontal and temporal cortices as indexed by auditory event-related potentials. Anesthesiology 2004; 100: 617-625
- 31 Gjerstad AC, Storm H, Hagen R, Huiku M, Qvigstad E, Ræder J. Skin conductance or entropy for detection of non-noxious stimulation during different clinical levels of sedation. Acta Anaesthesiologica Scandinavica 2007; 51: 1-7
- 32 Haenggi M, Ypparila H, Takala J, Korhonen I, Luginbühl M, Petersen-Felix S, Jakob SM. Measuring depth of sedation with auditory evoked potentials during controlled infusion of propofol and remifentanil in healthy volunteers. Anesthesia & Analgesia 2004; 99: 1728-1736
- 33 Hartikainen K, Rorarius M, Makela K, Perakyla J, Varila E, Jantti V. Visually evoked bursts during isoflurane anaesthesia. Br J Anaesth 1995; 74: 681-685
- 34 Makela K, Hartikainen K, Rorarius M, Jantti V. Suppression of F-VEP during isoflurane-induced EEG suppression. Electroencephalogr Clin Neurophysiol 1996; 100: 269-272
- 35 Murakami M, Kashiwadani H, Kirino Y, Mori K. State-dependent sensory gating in olfactory cortex. Neuron 2005; 46: 285-296
- 36 Samuelsson AR, Brandon NR, Tang P, Xu Y. Cellular registration without behavioral recall of olfactory sensory input under general anesthesia. Anesthesiology 2014; 120: 890-905
- 37 Bensafi M, Porter J, Pouliot S, Mainland J, Johnson B, Zelano C, Young N, Bremner E, Aframian D, Khan R, Sobel N. Olfactomotor activity during imagery mimics that during perception. Nat Neurosci 2003; 6: 1142-1144
- 38 Gottfried JA. Central mechanisms of odour object perception. Nat Rev Neurosci 2010; 11: 628-641
- 39 Lee U, Mashour GA, Kim S, Noh GJ, Choi BM. Propofol induction reduces the capacity for neural information integration: implications for the mechanism of consciousness and general anesthesia. Conscious Cogn 2009; 18: 56-64