Subscribe to RSS
DOI: 10.1055/s-0041-1731708
The Mechanism of Interleukin-35 in Chronic Hepatitis B
Funding Information The study is supported in part by grant no. 20190101006JH from the Foundation of Science and Technology, Department of Jilin Province (Jilin, Jilin; to Prof. Ling Qi), no. 20190220 from the Foundation of Qingyuan People's Hospital (Qingyuan, Guangdong; to Prof. Ling Qi), and no. 20200201482JC from the Natural Science Foundation of Jilin Province (Changchun, Jilin; to Prof. Lanlan Yang).
Abstract
Interleukin-35 (IL-35) is a newly identified inhibitory cytokine. It has recently been found to play an extremely important role in chronic hepatitis B disease, which makes it likely to be a target for new therapies for hepatitis B malady. IL-35 modulates a variety of immune mechanisms to cause persistent viral infections, such as affecting the ratio of helper T cells, reducing the activity of cytotoxic T cells, hindering the antigen presentation capacity for dendritic cells, and increasing the transcription level of hepatitis B virus. On the other hand, IL-35 can control the inflammation caused by hepatitis B liver injury. Therefore, to seek a breakthrough in curing hepatitis B disease, the contradictory part of IL-35 in the occurrence and development of this sickness is worthy of further discussion and research. This article will systematically review the biological effects of IL-35 and the specific mechanisms affecting the disease.
Authors' Contribution
Y.T. contributed to manuscript writing; T.M., S.J., and M.W. conducted literature retrieval; and L.Q. and L.Y. revised the manuscript.
Publication History
Article published online:
07 July 2021
© 2021. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 The Lancet. Towards elimination of viral hepatitis by 2030. Lancet 2016; 388 (10042): 308
- 2 Yan H, Zhong G, Xu G. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012; 1: e00049
- 3 Asselah T, Boyer N, Saadoun D, Martinot-Peignoux M, Marcellin P. Direct-acting antivirals for the treatment of hepatitis C virus infection: optimizing current IFN-free treatment and future perspectives. Liver Int 2016; 36 (Suppl. 01) 47-57
- 4 Zhang Z, Zhang JY, Wang LF, Wang FS. Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection. J Gastroenterol Hepatol 2012; 27 (02) 223-230
- 5 Isogawa M, Tanaka Y. Immunobiology of hepatitis B virus infection. Hepatol Res 2015; 45 (02) 179-189
- 6 Vignali DA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nat Immunol 2012; 13 (08) 722-728
- 7 Bao S, Zheng J, Li N. et al. Role of interleukin-23 in monocyte-derived dendritic cells of HBV-related acute-on-chronic liver failure and its correlation with the severity of liver damage. Clin Res Hepatol Gastroenterol 2017; 41 (02) 147-155
- 8 Matsumoto T, Takahashi K, Inuzuka T. et al. Activation of TNF-α-AID axis and co-inhibitory signals in coordination with Th1-type immunity in a mouse model recapitulating hepatitis B. Antiviral Res 2017; 139: 138-145
- 9 Li X, Mai J, Virtue A. et al. IL-35 is a novel responsive anti-inflammatory cytokine—a new system of categorizing anti-inflammatory cytokines. PLoS One 2012; 7 (03) e33628
- 10 Collison LW, Workman CJ, Kuo TT. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007; 450 (7169): 566-569
- 11 Fu YP, Yi Y, Cai XY. et al. Overexpression of interleukin-35 associates with hepatocellular carcinoma aggressiveness and recurrence after curative resection. Br J Cancer 2016; 114 (07) 767-776
- 12 Tedder TF, Leonard WJ. Autoimmunity: regulatory B cells--IL-35 and IL-21 regulate the regulators. Nat Rev Rheumatol 2014; 10 (08) 452-453
- 13 Shen P, Roch T, Lampropoulou V. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014; 507 (7492): 366-370
- 14 Haller S, Duval A, Migliorini R, Stevanin M, Mack V, Acha-Orbea H. Interleukin-35-producing CD8α+ dendritic cells acquire a tolerogenic state and regulate T cell function. Front Immunol 2017; 8: 98
- 15 Skowron W, Zemanek K, Wojdan K. et al. The effect of interleukin-35 on the integrity, ICAM-1 expression and apoptosis of human aortic smooth muscle cells. Pharmacol Rep 2015; 67 (02) 376-381
- 16 Bardel E, Larousserie F, Charlot-Rabiega P, Coulomb-L'Herminé A, Devergne O. Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J Immunol 2008; 181 (10) 6898-6905
- 17 Zeissig S, Murata K, Sweet L. et al. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat Med 2012; 18 (07) 1060-1068
- 18 Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2014; 381: 125-172
- 19 Lan YT, Wang ZL, Tian P, Gong XN, Fan YC, Wang K. Treg/Th17 imbalance and its clinical significance in patients with hepatitis B-associated liver cirrhosis. Diagn Pathol 2019; 14 (01) 114
- 20 Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol 2018; 19 (07) 665-673
- 21 Abbas AK, Benoist C, Bluestone JA. et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 2013; 14 (04) 307-308
- 22 Whiteside TL. FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity. Expert Opin Ther Targets 2018; 22 (04) 353-363
- 23 Campbell DJ, Ziegler SF. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 2007; 7 (04) 305-310
- 24 Ivanov II, McKenzie BS, Zhou L. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126 (06) 1121-1133
- 25 Durant L, Watford WT, Ramos HL. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 2010; 32 (05) 605-615
- 26 Hombach AA, Abken H. Most do, but some do not: CD4+CD25- T cells, but not CD4+CD25+ Treg cells, are cytolytic when redirected by a chimeric antigen receptor (CAR). Cancers (Basel) 2017; 9 (09) E112
- 27 Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 2014; 13 (06) 668-677
- 28 Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010; 40 (07) 1830-1835
- 29 Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 2012; 12 (05) 325-338
- 30 Zhang J, Jin H, Xu Y, Shan J. Rapamycin modulate Treg/Th17 balance via regulating metabolic pathways: a study in mice. Transplant Proc 2019; 51 (06) 2136-2140
- 31 Niedbala W, Wei XQ, Cai B. et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol 2007; 37 (11) 3021-3029
- 32 Shi YY, Dai MJ, Wu GP, Zhou PP, Fang Y, Yan XB. Levels of interleukin-35 and its relationship with regulatory T-cells in chronic hepatitis B patients. Viral Immunol 2015; 28 (02) 93-100
- 33 Collison LW, Delgoffe GM, Guy CS. et al. The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol 2012; 13 (03) 290-299
- 34 Collison LW, Chaturvedi V, Henderson AL. et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 2010; 11 (12) 1093-1101
- 35 Xu R, Shears RK, Sharma R. et al. IL-35 is critical in suppressing superantigenic Staphylococcus aureus-driven inflammatory Th17 responses in human nasopharynx-associated lymphoid tissue. Mucosal Immunol 2020; 13 (03) 460-470
- 36 Okada K, Fujimura T, Kikuchi T. et al. Effect of interleukin (IL)-35 on IL-17 expression and production by human CD4+ T cells. PeerJ 2017; 5: e2999
- 37 Yang J, Yang M, Htut TM. et al. Epstein-Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and RORgamma t. Eur J Immunol 2008; 38 (05) 1204-1214
- 38 Park H, Li Z, Yang XO. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6 (11) 1133-1141
- 39 Ma Y, Liu X, Wei Z. et al. The expression of a novel anti-inflammatory cytokine IL-35 and its possible significance in childhood asthma. Immunol Lett 2014; 162 (1 Pt A): 11-17
- 40 Curtsinger JM, Johnson CM, Mescher MF. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J Immunol 2003; 171 (10) 5165-5171
- 41 Nurieva R, Thomas S, Nguyen T. et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J 2006; 25 (11) 2623-2633
- 42 Arasanz H, Gato-Cañas M, Zuazo M. et al. PD1 signal transduction pathways in T cells. Oncotarget 2017; 8 (31) 51936-51945
- 43 Zelinskyy G, Werner T, Dittmer U. Natural regulatory T cells inhibit production of cytotoxic molecules in CD8+ T cells during low-level Friend retrovirus infection. Retrovirology 2013; 10: 109
- 44 Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 2002; 20: 323-370
- 45 Zelinskyy G, Balkow S, Schimmer S, Schepers K, Simon MM, Dittmer U. Independent roles of perforin, granzymes, and Fas in the control of Friend retrovirus infection. Virology 2004; 330 (02) 365-374
- 46 Hashimoto M, Kamphorst AO, Im SJ. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med 2018; 69: 301-318
- 47 Bengsch B, Martin B, Thimme R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. J Hepatol 2014; 61 (06) 1212-1219
- 48 Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015; 15 (08) 486-499
- 49 Tang ZS, Hao YH, Zhang EJ. et al. CD28 family of receptors on T cells in chronic HBV infection: expression characteristics, clinical significance and correlations with PD-1 blockade. Mol Med Rep 2016; 14 (02) 1107-1116
- 50 Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007; 8 (03) 239-245
- 51 Peng G, Li S, Wu W, Tan X, Chen Y, Chen Z. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol 2008; 45 (04) 963-970
- 52 Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677-704
- 53 Yang L, Zhang Q, Song J, Wang W, Jin Z. Interleukin-35 suppresses CD8+ T cell activity in patients with viral hepatitis-induced acute-on-chronic liver failure. Dig Dis Sci 2020; 65 (12) 3614-3623
- 54 Turnis ME, Sawant DV, Szymczak-Workman AL. et al. Interleukin-35 limits anti-tumor immunity. Immunity 2016; 44 (02) 316-329
- 55 Chen S, Crabill GA, Pritchard TS. et al. Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother Cancer 2019; 7 (01) 305
- 56 Brockmann L, Soukou S, Steglich B. et al. Molecular and functional heterogeneity of IL-10-producing CD4+ T cells. Nat Commun 2018; 9 (01) 5457
- 57 Li X, Tian L, Dong Y. et al. IL-35 inhibits HBV antigen-specific IFN-γ-producing CTLs in vitro. Clin Sci (Lond) 2015; 129 (05) 395-404
- 58 Kunitani H, Shimizu Y, Murata H, Higuchi K, Watanabe A. Phenotypic analysis of circulating and intrahepatic dendritic cell subsets in patients with chronic liver diseases. J Hepatol 2002; 36 (06) 734-741
- 59 Beckebaum S, Cicinnati VR, Zhang X. et al. Hepatitis B virus-induced defect of monocyte-derived dendritic cells leads to impaired T helper type 1 response in vitro: mechanisms for viral immune escape. Immunology 2003; 109 (04) 487-495
- 60 Fazle Akbar SM, Furukawa S, Onji M. et al. Safety and efficacy of hepatitis B surface antigen-pulsed dendritic cells in human volunteers. Hepatol Res 2004; 29 (03) 136-141
- 61 Jiang WZ, Fan Y, Liu X. et al. Therapeutic potential of dendritic cell-based immunization against HBV in transgenic mice. Antiviral Res 2008; 77 (01) 50-55
- 62 Luo J, Li J, Chen RL. et al. Autologus dendritic cell vaccine for chronic hepatitis B carriers: a pilot, open label, clinical trial in human volunteers. Vaccine 2010; 28 (13) 2497-2504
- 63 Yonejima A, Mizukoshi E, Tamai T. et al. Characteristics of impaired dendritic cell function in patients with hepatitis B virus infection. Hepatology 2019; 70 (01) 25-39
- 64 Zheng BJ, Zhou J, Qu D. et al. Selective functional deficit in dendritic cell--T cell interaction is a crucial mechanism in chronic hepatitis B virus infection. J Viral Hepat 2004; 11 (03) 217-224
- 65 Matta BM, Raimondi G, Rosborough BR, Sumpter TL, Thomson AW. IL-27 production and STAT3-dependent upregulation of B7-H1 mediate immune regulatory functions of liver plasmacytoid dendritic cells. J Immunol 2012; 188 (11) 5227-5237
- 66 Arima S, Akbar SM, Michitaka K. et al. Impaired function of antigen-presenting dendritic cells in patients with chronic hepatitis B: localization of HBV DNA and HBV RNA in blood DC by in situ hybridization. Int J Mol Med 2003; 11 (02) 169-174
- 67 Untergasser A, Zedler U, Langenkamp A. et al. Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection. Hepatology 2006; 43 (03) 539-547
- 68 Op den Brouw ML, Binda RS, van Roosmalen MH. et al. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology 2009; 126 (02) 280-289
- 69 Beckebaum S, Cicinnati VR, Dworacki G. et al. Reduction in the circulating pDC1/pDC2 ratio and impaired function of ex vivo-generated DC1 in chronic hepatitis B infection. Clin Immunol 2002; 104 (02) 138-150
- 70 Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154 (01) 3-20
- 71 Chen X, Hao S, Zhao Z. et al. Interleukin 35: Inhibitory regulator in monocyte-derived dendritic cell maturation and activation. Cytokine 2018; 108: 43-52
- 72 Wang RX, Yu CR, Dambuza IM. et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med 2014; 20 (06) 633-641
- 73 Wang FS, Xing LH, Liu MX. et al. Dysfunction of peripheral blood dendritic cells from patients with chronic hepatitis B virus infection. World J Gastroenterol 2001; 7 (04) 537-541
- 74 Tong S, Revill P. Overview of hepatitis B viral replication and genetic variability. J Hepatol 2016; 64 (Suppl. 01) S4-S16
- 75 Ganem D, Prince AM. Hepatitis B virus infection—natural history and clinical consequences. N Engl J Med 2004; 350 (11) 1118-1129
- 76 Turton KL, Meier-Stephenson V, Badmalia MD, Coffin CS, Patel TR. Host transcription factors in hepatitis B virus RNA synthesis. Viruses 2020; 12 (02) E160
- 77 Quarleri J. Core promoter: a critical region where the hepatitis B virus makes decisions. World J Gastroenterol 2014; 20 (02) 425-435
- 78 Su H, Yee JK. Regulation of hepatitis B virus gene expression by its two enhancers. Proc Natl Acad Sci U S A 1992; 89 (07) 2708-2712
- 79 Ko HL, Lam TH, Ng H, Toh J, Wang LW, Ren EC. Identification of Slug and SOX7 as transcriptional repressors binding to the hepatitis B virus core promoter. J Hepatol 2018; 68 (01) 42-52
- 80 Huang Y, Tai AW, Tong S, Lok AS. HBV core promoter mutations promote cellular proliferation through E2F1-mediated upregulation of S-phase kinase-associated protein 2 transcription. J Hepatol 2013; 58 (06) 1068-1073
- 81 Tao NN, Gong R, Chen X. et al. Interleukin-35 stimulates hepatitis B virus transcription and replication by targeting transcription factor HNF4α. J Gen Virol 2018; 99 (05) 645-654
- 82 Odom DT, Zizlsperger N, Gordon DB. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 2004; 303 (5662): 1378-1381
- 83 Quasdorff M, Protzer U. Control of hepatitis B virus at the level of transcription. J Viral Hepat 2010; 17 (08) 527-536
- 84 Zheng Y, Li J, Ou JH. Regulation of hepatitis B virus core promoter by transcription factors HNF1 and HNF4 and the viral X protein. J Virol 2004; 78 (13) 6908-6914
- 85 Cho EY, Kim HJ, Park C, So HS, Park RK, Kim HC. Impact of nucleotide mutations at the HNF3- and HNF4-binding sites in enhancer 1 on viral replication in patients with chronic hepatitis B virus infection. Gut Liver 2013; 7 (05) 569-575
- 86 Guttek K, Reinhold D. Stimulated human peripheral T cells produce high amounts of IL-35 protein in a proliferation-dependent manner. Cytokine 2013; 64 (01) 46-50
- 87 Jiang Y, Wang J, Li H, Xia L. IL-35 alleviates inflammation progression in a rat model of diabetic neuropathic pain via inhibition of JNK signaling. J Inflamm (Lond) 2019; 16: 19
- 88 Sha X, Meng S, Li X. et al. Interleukin-35 inhibits endothelial cell activation by suppressing MAPK-AP-1 pathway. J Biol Chem 2015; 290 (31) 19307-19318
- 89 Zhang J, Lin Y, Li C. et al. IL-35 decelerates the inflammatory process by regulating inflammatory cytokine secretion and M1/M2 macrophage ratio in psoriasis. J Immunol 2016; 197 (06) 2131-2144
- 90 Wang Y, Mao Y, Zhang J. et al. IL-35 recombinant protein reverses inflammatory bowel disease and psoriasis through regulation of inflammatory cytokines and immune cells. J Cell Mol Med 2018; 22 (02) 1014-1025
- 91 Li X, Fang P, Yang WY, Wang H, Yang X. IL-35, as a newly proposed homeostasis-associated molecular pattern, plays three major functions including anti-inflammatory initiator, effector, and blocker in cardiovascular diseases. Cytokine 2019; 122: 154076
- 92 Shao X, Ma J, Jia S, Yang L, Wang W, Jin Z. Interleukin-35 suppresses antiviral immune response in chronic hepatitis B virus infection. Front Cell Infect Microbiol 2017; 7: 472
- 93 Teng DK, Liu Y, Lv YF. et al. Elevated interleukin-35 suppresses liver inflammation by regulation of T helper 17 cells in acute hepatitis B virus infection. Int Immunopharmacol 2019; 70: 252-259
- 94 Jhun J, Lee S, Kim H. et al. HMGB1/RAGE induces IL-17 expression to exaggerate inflammation in peripheral blood cells of hepatitis B patients. J Transl Med 2015; 13: 310
- 95 Du WJ, Zhen JH, Zeng ZQ. et al. Expression of interleukin-17 associated with disease progression and liver fibrosis with hepatitis B virus infection: IL-17 in HBV infection. Diagn Pathol 2013; 8: 40
- 96 Xie S, Li J, Wang JH. et al. IL-17 activates the canonical NF-kappaB signaling pathway in autoimmune B cells of BXD2 mice to upregulate the expression of regulators of G-protein signaling 16. J Immunol 2010; 184 (05) 2289-2296
- 97 Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 2004; 39 (05) 1332-1342
- 98 Zheng XF, Hu XY, Ma B. et al. Interleukin-35 attenuates D-galactosamine/lipopolysaccharide-induced liver injury via enhancing interleukin-10 production in Kupffer cells. Front Pharmacol 2018; 9: 959
- 99 Zhou Y, Zhang H, Li Y. IL-35 expression in peripheral blood CD4(+) T cells from chronic hepatitis B virus-infected patients directly correlates with virus load. Cytokine 2015; 73 (01) 169-175
- 100 Shi M, Wei J, Dong J. et al. Function of interleukin-17 and -35 in the blood of patients with hepatitis B-related liver cirrhosis. Mol Med Rep 2015; 11 (01) 121-126