Synlett 2022; 33(01): 98-102
DOI: 10.1055/s-0041-1737140
letter

Palladium-Catalyzed [1,3]-O-to-N Rearrangement of Allylic ­Imidates

Yusuke Kuroda
This work was generously supported by funding from the Research Foundation ITSUU Laboratory.


Abstract

The rearrangement of allylic imidates is a powerful transformation for the synthesis of allylic amines. Whereas the [3,3]-rearrangement has long been established as the Overman rearrangement, the corresponding [1,3]-rearrangement is rare. Here, we report a novel strategy for the [1,3]-rearrangement of imidates based on the oxidative addition of a palladium(0) catalyst to an allylic imidate. Structurally distinct allylic amides could be synthesized under mild and base-free conditions.

Supporting Information



Publication History

Received: 22 September 2021

Accepted after revision: 07 November 2021

Article published online:
17 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Ramirez TA, Zhao B, Shi Y. Chem. Soc. Rev. 2012; 41: 931
    • 2b Guillena G, Ramón DJ, Yus M. Chem. Rev. 2010; 110: 1611
    • 2c Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689
    • 2d Cheikh RB, Chaabouni R, Laurent A, Mison P, Nafti A. Synthesis 1983; 685

      For seminal references, see:
    • 3a Overman LE. J. Am. Chem. Soc. 1974; 96: 597
    • 3b Overman LE. J. Am. Chem. Soc. 1976; 98: 2901

      For selected reviews on the Overman rearrangement, see:
    • 4a Overman LE. Acc. Chem. Res. 1980; 13: 218
    • 4b Fernandes RA, Kattanguru P, Gholap SP, Chaudhari DA. Org. Biomol. Chem. 2017; 15: 2672

      O-to-N alkyl migratory rearrangements of β-hydroxy α-diazo carbonyl compounds have been reported, see:
    • 5a Shi W, Jiang N, Zhang S, Wu W, Du D, Wang J. Org. Lett. 2003; 5: 2243
    • 5b Zhang Z, Shi W, Zhang J, Zhang B, Liu B, Liu Y, Fan B, Xiao F, Xu F, Wang J. Chem. Asian J. 2010; 5: 1112
    • 5c Trost BM, Malhotra S, Ellerbrock P. Org. Lett. 2013; 15: 440
    • 6a Hoffmann MG, Schmidt RR. Liebigs Ann. Chem. 1985; 2403
    • 6b Li C, Wang J. J. Org. Chem. 2007; 72: 7431
    • 6c Adhikari AA, Suzuki T, Gilbert RT, Linaburg MR, Chisholm JD. J. Org. Chem. 2017; 82: 3982

      For seminal examples of acid-catalyzed [1,3]-rearrangement of imidates, see:
    • 7a Cramer F, Pawelzik K, Kupper J. Angew. Chem. 1956; 68: 649
    • 7b Cramer F, Hennrich N. Chem. Ber. 1961; 94: 976
  • 8 For a review of [1,3]-rearrangement of glycosyl trichloroacetimidates, see: Christensen HM, Oscarson S, Jensen HH. Carbohydr. Res. 2015; 408: 51
    • 9a Galeazzi R, Martelli G, Orena M, Rinaldi S. Synthesis 2004; 2560
    • 9b Galeazzi R, Martelli G, Orena M, Rinaldi S, Sabatino P. Tetrahedron 2005; 61: 5465
    • 9c Kobbelgaard S, Brandes S, Jørgensen KA. Chem. Eur. J. 2008; 14: 1464
  • 10 Arnold JS, Zhang Q, Nguyen HM. Eur. J. Org. Chem. 2014; 4925

    • For seminal references on palladium(0)-mediated allylic alkylation, see:
    • 11a Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387
    • 11b Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
  • 12 For a selected review of palladium(0)-catalyzed allylic alkylation, see: Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
  • 13 Fristrup P, Jensen T, Hoppe J, Norrby P.-O. Chem. Eur. J. 2006; 12: 5352
    • 14a Yamada Y, Mukai K, Yoshioka H, Tamaru Y, Yoshida Z.-i. Tetrahedron Lett. 1979; 20: 5015
    • 14b Tamaru Y, Yoshida Z, Yamada Y, Mukai K, Yoshioka H. J. Org. Chem. 1983; 48: 1293
    • 14c Hiroi K, Kitayama R, Sato S. J. Chem. Soc., Chem. Commun. 1984; 303
    • 14d Auburn PR, Whelan J, Bosnich B. Organometallics 1986; 5: 1533
    • 14e Hiroi K, Makino K. Chem. Pharm. Bull. 1988; 36: 1744
    • 14f Harayama H, Nagahama T, Kozera T, Kimura M, Fugami K, Tanaka S, Tamaru Y. Bull. Chem. Soc. Jpn. 1997; 70: 445
    • 14g Böhme A, Gais H.-J. Tetrahedron: Asymmetry 1999; 10: 2511
    • 14h Gais H.-J, Böhme A. J. Org. Chem. 2002; 67: 1153
    • 14i Jagusch T, Gais H.-J, Bondarev O. J. Org. Chem. 2004; 69: 2731
    • 15a Yeung CS, Hsieh TH. H, Dong VM. Chem. Sci. 2011; 2: 544
    • 15b Pan S, Ryu N, Shibata T. Org. Lett. 2013; 15: 1902
  • 16 2,2,2-Trichloro-N-[(2E)-3-cyclohexylprop-2-en-1-yl]acetamide (2b); Typical Procedure In an argon-filled glove box, Pd2(dba)3 (9.2 mg, 0.010 mmol) and L1 (40.0 mg, 0.100 mmol) were weighed into a 4 mL vial equipped with a stirrer bar. CH2Cl2 (1.0 mL) was added, and the resulting mixture was stirred at RT for 5 min while the color of the mixture changed from dark wine-red to green-amber. The solution of the palladium complex was transferred to a separate 4 mL vial containing imidate 1b (113 mg, 0.400 mmol), and the vessel was sealed with a Teflon-lined cap. The mixture was stirred at RT for 21 h then directly passed through a silica gel plug that was washed thoroughly with CH2Cl2. The solvent was removed from the filtrate, and the residue was purified by column chromatography [silica gel, hexanes–EtOAc (100:0 to 90:10)] to give a white solid; yield: 100 mg (88%; E/Z = 97:3); mp 69–71 °C; Rf = 0.40 (hexanes–EtOAc, 5:1; UV). 1H NMR (400 MHz, CDCl3): δ = 6.66 (br s, 1 H), 5.67 (dd, J = 15.4, 6.6 Hz, 1 H), 5.43 (dt, J = 15.4, 6.1 Hz, 1 H), 3.92 (d, J = 6.1 Hz, 2 H), 2.01−1.94 (m, 1 H), 1.73−1.64 (m, 5 H), 1.32−1.02 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 161.5, 141.1, 121.1, 92.6, 43.3, 40.2, 32.5, 26.0, 25.8. HRMS (ESI): m/z [M + Na]+ calcd for C11H16Cl3NNaO: 306.0190; found: 306.0184.
  • 17 Moreno-Mañas M, Morral L, Pleixats R. J. Org. Chem. 1998; 63: 6160 ; and references therein
  • 18 Hayashi T, Hagihara T, Konishi M, Kumada M. J. Am. Chem. Soc. 1983; 105: 7767