Synlett 2024; 35(13): 1569-1571
DOI: 10.1055/s-0041-1738458
letter

Radiosynthesis of α-[18F]Fluoroamides with [18F]AgF

Kehao Gong
a   Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, P. R. of China
,
Zhengxu Yin
b   School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. of China
,
Pengfei Song
a   Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, P. R. of China
,
Bo Xu
c   College of Chemistry and Chemical Engineering, Donghua University, North Renmin Road 2999, Shanghai 201620, P. R. of China
,
Junbin Han
a   Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, P. R. of China
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (NSFC 22001041 and 22171050) and the Shanghai Municipal Health Commission (GWV-11.1-40). B.X. is thankful to the National Natural Science Foundation of China (NSFC 22071022).


Abstract

A silver-promoted nucleophilic radiofluorination of α-bromoamides has been developed for the radiosynthesis of α-[18F]fluoroamides. The reaction conditions are straightforward and compatible with primary, secondary, and tertiary α-bromoamides. Furthermore, the methodology has been successfully applied to the synthesis of bioactive radiotracers with good radiochemical conversion (RCC) and radiochemical yield (RCY).

Supporting Information



Publication History

Received: 06 October 2023

Accepted after revision: 27 November 2023

Article published online:
15 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Greenberg A, Breneman CM, Liebman JF. John Wiley & Sons; New York: 2000
    • 1b Pattabiraman VR, Bode JW. Nature 2011; 480: 471
    • 1c Meng G, Zhang J, Szostak M. Chem. Rev. 2021; 121: 12746
    • 2a Jacobson O, Kiesewetter DO, Chen X. Bioconjugate Chem. 2015; 26: 1
    • 2b Halder R, Ritter T. J. Org. Chem. 2021; 86: 13873
    • 2c Leibler IN.-M, Gandhi SS, Tekle-Smith MA, Doyle AG. J. Am. Chem. Soc. 2023; 145: 9928
    • 3a Wheeler P, Vora HU, Rovis T. Chem. Sci. 2013; 4: 1674
    • 3b Dong X, Yang W, Hu W, Sun J. Angew. Chem. Int. Ed. 2015; 54: 660
    • 3c de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
    • 3d Zheng Z, van der Werf A, Deliaval M, Selander N. Org. Lett. 2020; 22: 2791
    • 3e Rozatian N, Hodgson DR. W. Chem. Commun. 2021; 57: 683
  • 4 Ajenjo J, Destro G, Cornelissen B, Gouverneur V. EJNMMI Radiopharm. Chem. 2021; 6: 33
  • 5 Adler P, Teskey CJ, Kaiser D, Holy M, Sitte HH, Maulide N. Nat. Chem. 2019; 11: 329
  • 6 Mizuta S, Kitamura K, Kitagawa A, Yamaguchi T, Ishikawa T. Chem. Eur. J. 2021; 27: 5930
    • 7a Casalini F, Fugazza L, Esposito G, Cabella C, Brioschi C, Cordaro A, D’Angeli L, Bartoli A, Filannino AM, Gringeri CV, Longo DL, Muzio V, Nuti E, Orlandini E, Figlia G, Quattrini A, Tei L, Digilio G, Rossello A, Maiocchi A. J. Med. Chem. 2013; 56: 2676
    • 7b Liu S, Tang X, Nie D, Jiang S, Tang G. Synth. Commun. 2017; 47: 1136
  • 8 Gray EE, Nielsen MK, Choquette KA, Kalow JA, Graham TJ. A, Doyle AG. J. Am. Chem. Soc. 2016; 138: 10802
  • 9 See YY, Morales-Colón MT, Bland DC, Sanford MS. Acc. Chem. Res. 2020; 53: 2372
    • 10a Khotavivattana T, Verhoog S, Tredwell M, Pfeifer L, Calderwood S, Wheelhouse K, Collier TL, Gouverneur V. Angew. Chem. Int. Ed. 2015; 54: 9991
    • 10b Verhoog S, Pfeifer L, Khotavivattana T, Calderwood S, Collier TL, Wheelhouse K, Tredwell M, Gouverneur V. Synlett 2016; 27: 25
    • 10c Wu J, Zhao Q, Wilson TC, Verhoog S, Lu L, Gouverneur V, Shen Q. Angew. Chem. Int. Ed. 2019; 58: 2413
    • 10d Zhao Q, Isenegger PG, Wilson TC, Sap JB. I, Guibbal F, Lu L, Gouverneur V, Shen Q. CCS Chem. 2020; 3: 1921
    • 11a Thompson S, Lee SJ, Jackson IM, Ichiishi N, Brooks AF, Sanford MS, Scott PJ. H. Synthesis 2019; 51: 4401
    • 11b Lee SJ, Brooks AF, Ichiishi N, Makaravage KJ, Mossine AV, Sanford MS, Scott PJ. H. Chem. Commun. 2019; 55: 2976
  • 12 Gao X, Gong K, Wang M, Xu B, Han J. Org. Lett. 2022; 24: 6438
  • 13 During the preparation of this manuscript, we found that Sanford and Scott’s group have reported a similar radiofluorination method in a meeting abstract; see: Wright J, Webb E, Richard M, Cheng K, Brooks A, Sanford M, Scott P. J. Nucl. Med. 2022; 63 (Suppl. 02) 2557
  • 14 General procedure for the synthesis of α-fluoroamides: α-Bromoamide 1 (2 mmol, 1 equiv), AgF (2 equiv), and MeCN (20 mL) were consecutively added to a 100 mL round-bottomed flask equipped with a magnetic stirring bar. The resulting mixture was stirred at room temperature for 12 h. After completion of the reaction, the solvent was removed by rotary evaporation, and the reaction mixture was extracted with brine and EtOAc. The crude product was further purified by column chromatography on silica gel to give the corresponding product. 2-Fluoro-2-methyl-N-phenylpropanamide (2g): White solid. 1H NMR (500 MHz, CDCl3): δ = 8.10 (br s, 1 H), 7.58 (d, J = 7.9 Hz, 2 H), 7.35 (t, J = 7.8 Hz, 2 H), 7.15 (t, J = 7.1 Hz, 1 H), 1.67 (d, J = 22.4 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 171.0 (d, J = 19.5 Hz), 137.0, 129.0, 124.7, 119.8, 96.5 (d, J = 182.7 Hz), 25.0 (d, J = 24.0 Hz). 19F NMR (376 MHz, CDCl3): δ = –144.72 to –145.32 (m, 1 F). HRMS: (EI+): m/z calcd for C10H12FNO [M]+: 181.0898; found: 181.0903.
  • 15 General procedure for radiosynthesis of α-[18F]fluoroamides: α-Bromoamide 1 (6 mg, about 25–35 μmol) and acetonitrile (850 μL) were added to a reaction vial. [18F]AgF/K2.2.2 solution (0.2–0.3 GBq, 150 μL) was then transferred to the reaction vial. The reaction was kept at 110 °C for 30 min. The reaction mixture was then cooled and subjected to HPLC for further analysis.