Horm Metab Res 2016; 48(07): 468-475
DOI: 10.1055/s-0042-101027
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

In Vitro Effects of Pioglitazone on the Expression of Components of Wnt Signaling Pathway and Markers of Bone Mineralization

D. Avtanski
1   Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Breast Cancer Program, Johns Hopkins University, Baltimore, USA
,
Y. Hirth
2   Division of Endocrinology, Department of Medicine, Beth Israel Medical Center, Albert Einstein College of Medicine, The Friedman Diabetes Institute New York, New York, USA
,
N. Babushkin
2   Division of Endocrinology, Department of Medicine, Beth Israel Medical Center, Albert Einstein College of Medicine, The Friedman Diabetes Institute New York, New York, USA
,
V. Sy
2   Division of Endocrinology, Department of Medicine, Beth Israel Medical Center, Albert Einstein College of Medicine, The Friedman Diabetes Institute New York, New York, USA
,
D. Sharma
1   Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Breast Cancer Program, Johns Hopkins University, Baltimore, USA
,
L. Poretsky
2   Division of Endocrinology, Department of Medicine, Beth Israel Medical Center, Albert Einstein College of Medicine, The Friedman Diabetes Institute New York, New York, USA
3   Division of Endocrinology, Lenox Hill Hospital, Northwell Health New York, New York, USA
,
D. Seto-Young
2   Division of Endocrinology, Department of Medicine, Beth Israel Medical Center, Albert Einstein College of Medicine, The Friedman Diabetes Institute New York, New York, USA
› Author Affiliations
Further Information

Publication History

received 16 September 2015

accepted 07 January 2016

Publication Date:
05 February 2016 (online)

Abstract

Pioglitazone is an insulin-sensitizing thiazolidinedione (TZD) whose use is associated with bone loss. We examined the effects of pioglitazone on components of the Wnt signaling pathway (Wnt1, β-catenin) and markers of bone mineralization [osteoprotegerin (OPG), bone sialoprotein (BSP), fibroblast growth factor (FGF)23] as well as mineral content in human osteoblast hFOB 1.19 cells. hFOB 1.19 cells were cultured in K12/DMD medium with or without pioglitazone. PPARγ Wnt1, OPG, BSP, or FGF23 mRNA expression was measured using qRT-PCR; β-catenin, OPG, BSP, or FGF23 using ELISA; and calcium or phosphate content using colorimetry. Treatment with pioglitazone resulted in increased expression of PPARγ mRNA in hFOB 1.19 osteoblasts. Pioglitazone decreased Wnt1 mRNA levels and suppressed components of Wnt signaling pathway as evidenced by a decrease in β-catenin gene expression and secretion as well as β-catenin specific activity. The expression and the activity of OPG, BSP, and FGF23 were also reduced by pioglitazone together with total (but not specific) calcium and phosphate content. Pioglitazone affects Wnt1 signaling pathway and mineral matrix regulation components in human osteoblasts.

 
  • References

  • 1 Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995; 270: 12953-12956
  • 2 Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, Kravitz BG, Yu D, Heise MA, Aftring RP, Viberti G. and the A Diabetes Outcome Progression Trial (ADOPT) Study Group. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2008; 31: 845-851
  • 3 Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 2007; 92: 1305-1310
  • 4 Berberoglu Z, Gursoy A, Bayraktar N, Yazici AC, Tutuncu NB, Demirag NG. Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 2007; 92: 3523-3530
  • 5 Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Vibert G, Kahn SE. and the A Diabetes Outcome Progression Trial (ADOPT) Study Group. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 2010; 95: 134-142
  • 6 Li H, Cui R, Cai H, Wu G, Lv Z, Sheng C et al. The effect of thiazolidinediones on bone mineral density in Chinese older patients with type 2 diabetes. J Bone Miner Metab 2010; 28: 77-81
  • 7 Berberoglu Z, Yazici AC, Demirag NG. Effects of rosiglitazone on bone mineral density and remodelling parameters in Postmenopausal diabetic women: A 2-year follow-up study. Clin Endocrinol (Oxf) 2010; 73: 305-312
  • 8 Seth A, Sy V, Pareek A, Suwandhi P, Rosenwaks Z, Poretsky L, Seto-Young D. Thiazolidinediones (TZDs) Affect Osteoblast Viability and Biomarkers Independently of the TZD Effects on Aromatase. Horm Metab Res 2013; 45: 1-8
  • 9 Karsenty G. Minireview: Transcriptional control of osteoblast differentiation. Endocrinology 2001; 2731-2733
  • 10 Diascro DD, Vogel RL, Johnson TE, Witherup KM, Pitzenberger SM, Rutledge SJ, Prescott DJ, Rodan GA, Schmidt A. High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res 1998; 13: 96-106
  • 11 Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 1998; 13: 371-382
  • 12 Maurin AC, Chavassieux PM, Meunier PJ. Expression of PPARgamma and beta/delta in human primary osteoblastic cells: influence of polyunsaturated fatty acids. Calcif Tissue Int 2005; 76: 385-392
  • 13 Chambers TJG, Giles A, Brabant G, Davis JRE. Wnt signalling in pituitary development and tumorigenesis. Endocr-Rel Cancer 2013; 20: R101-R111
  • 14 Clevers H, Nusse R. Wnt/b-catenin signaling and disease. Cell 2012; 1192-1205
  • 15 MacDonald BT, Tamai K, He X. Wnt/b-Catenin Signaling: Components, Mechanisms, and Diseases. Develop Cell 2009; 17: 9-26
  • 16 Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008; 4: 68-75
  • 17 Pérez de Ciriza C, Lawrie A, Varo N. Osteoprotegerin in Cardiometabolic Disorders. Int J Endocrinol 2015; 564934
  • 18 Pérez de Ciriza C, Moreno M, Restituto P, Bastarrika G, Simón I, Colina I, Varo N. Circulating osteoprotegerin is increased in the metabolic syndrome and associates with subclinical atherosclerosis and coronary arterial calcification. Clin Biochem 2014; 47: 272-278
  • 19 Sapir-Koren R, Livshits G. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles?. Osteoporosis Int 2014; 25: 2685-2700
  • 20 Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliot R, Colombero A, Tan HL, Trail G, Sullivan Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hall D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309-319
  • 21 Baud’huin M, Duplomb L, Teletchea S, Lamoureux F, Ruiz-Velasco C, Maillasson M, Maillasson M, Reidinin F, Heymann MF, Heymann D. Osteoprotegerin: Multiple partners for multiple functions. Cytokine Growth Factor Rev 2013; 24: 401-409
  • 22 Corrado A, Neve A, Macchiarola A, Gaudio A, Marucci A, Cantatore FP. RANKL/OPG ratio and DKK-1 expression in primary osteoblastic cultures from osteoarthritic and osteoporotic subjects. J Rheumatol 2013; 40: 684-694
  • 23 Takahashi N, Maeda K, Ishihara A, Uehara S, Kobayashi Y. Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front Biosci 2011; 16: 21-30
  • 24 Park JS, Cho MH, Nam JS, Yoo JS, Ahn CW, Cha BS, Kim KR, Lee HC. Effect of pioglitazone on serum concentrations of osteoprotegerin in patients with type 2 diabetes mellitus. Eur J Endocrinol 2011; 164: 69-74
  • 25 Jüppner H. Phosphate and FGF-23. Kidney Int Suppl 2011; 121: S24-S27
  • 26 Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghisan FK. 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 2005; 289: G1036-G1042
  • 27 Hsu C. FGF-23 and outcomes research–when physiology meets epidemiology. N Eng J Med 2008; 359: 640-642
  • 28 Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Jüppner H, Wolf M. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359: 584-592
  • 29 Fisher LW, McBride OW, Termine JD, Young MF. Human bone sialoprotein. Deduced protein sequence and chromosomal localization. J Biol Chem 1990; 265: 2347-2351
  • 30 Ganss B, Kim RH, Sodek J. Bone sialoprotein. Crit Rev Oral Biol Med 1999; 10: 79-98
  • 31 Malaval L, Wade-Guéye NM, Boudiffa M, Fei J, Zirngibl R, Chen F, Laroche N, Roux J-P, Burt-Pichat B, DuBoeuf F, Bolvin G, Jurdic P, Lafag-Proust M-H, Amédée J, Vico L, Rossant J, Aubin JE. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 2008; 205: 1145-1153
  • 32 Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 2009; 5: 442-447
  • 33 Harris SA, Enger RJ, Riggs BL, Spelsberg TC. Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res 1995; 10: 178-186
  • 34 Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ. Differential effect of steady versus oscillating flow on bone cells. J Biomech. 1998; 31: 969-976
  • 35 Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76-85 Erratum in: Anal Biochem 1987; 163: 279
  • 36 Rodríguez-Rodríguez E, Navia Lombán B, López-Sobaler AM, Ortega Anta RM. Review and future perspectives on recommended calcium intake. Nutr Hosp 25: 366-374
  • 37 Fisher DK, Higgins TJ. A sensitive, high-volume, colorimetric assay for protein phosphatases. Pharm Res 1994; 11: 759-763
  • 38 Hasegawa T, Oizumi K, Yoshiko Y, Tanne K, Maeda N, Aubin JE. The PPARgamma-selective ligand BRL-49653 differentially regulates the fate choices of rat calvaria versus rat bone marrow stromal cell populations. BMC. Dev Biol 2008; 8: 71
  • 39 Perry CG, Petrie JR. Insulin-sensitising agents: beyond thiazolidinediones. Expert Opin Emerg Drugs 2002; 7: 165-174
  • 40 Buckingham RE. Thiazolidinediones: Pleiotropic drugs with potent anti-inflammatory properties for tissue protection. Hepatol Res 2005; 33: 167-170
  • 41 Reynolds K, Goldberg RB. Thiazolidinediones: Beyond glycemic control. Treat Endocrinol 2006; 5: 25-36
  • 42 Sandieson L, Hwang JTK, Kelly GM. Redox Regulation of Canonical Wnt Signaling Affects Extraembryonic Endoderm Formation. Stem Cells Dev 2014; 23: 1037-1049
  • 43 Minde DP, Anvarian Z, Rüdiger SG, Maurice MM. Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer?. Mol Cancer 2011; 10: 101
  • 44 Wan Y. PPARg in bone homeostasis. Trends Endocrinol Metab 2010; 21: 722-728
  • 45 Raisz LG. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J Clin Investig 2005; 115: 3318-3325
  • 46 Diniz H, Frazão JM. The role of fibroblast growth factor 23 in chronic kidney disease-mineral and bone disorder. Nefrologia 2013; 33: 835-844
  • 47 Smith ER, Cai MM, McMahon LP, Holt SG. Biological variability of plasma intact and C-terminal FGF23 measurements. J Clin Endocrinol Metab 2012; 97: 3357-3365
  • 48 Smith ER, McMahon LP, Holt SG. Method-specific differences in plasma fibroblast growth factor 23 measurement using 4 commercial ELISAs. Clin Chem Lab Med 2013; 51: 1971-1981