Subscribe to RSS
DOI: 10.1055/s-0042-102150
Kann eine kohlenhydratarme/ketogene Ernährung das Tumorwachstum verzögern?
Can a Low Carbohydrate/ketogenic Diet Retard Tumor Growth?Publication History
Publication Date:
11 April 2016 (online)
Zusammenfassung
Hintergrund: Der Stoffwechsel maligner Tumoren unterscheidet sich von dem gesunder Gewebe oftmals durch eine gesteigerte Rate an Glukoseumsatz. In den letzten Jahren stieg das Interesse an einem diätischen Therapieansatz, der das Ziel verfolgt, mithilfe einer Kohlenhydrateinschränkung diese metabolische Besonderheit von Tumorzellen auszunutzen. Präklinische Studien, bei denen tumortragende Tiere eine kohlenhydratbeschränkte Diät – entweder in Form von Fasten/Kalorienrestriktion oder einer kohlenhydratarmen, fettreichen ketogenen Diät – verabreicht bekamen, konnten wachstumshemmende Effekte gegenüber Tumoren nachweisen. Dabei wirken diese Diäten über mehrere verschiedene und sich teilweise überlappende Signalwege, die hauptsächlich über 4 Stoffwechselveränderungen induziert werden. Dies sind eine Absenkung des Blutzucker- und damit Insulinspiegels und eine Erhöhung des Ketonkörper- sowie freien Fettsäurespiegels. Die Übertragbarkeit dieser zumeist an Mäusen gewonnenen Ergebnisse auf den Menschen erscheint zunächst fraglich. Deshalb werden in dieser Arbeit die bisher publizierten klinischen Daten in Bezug auf eine mögliche Wachstumshemmung durch ketogene Diäten untersucht.
Material und Methodik: Es wurden alle bisher erschienenen relevanten klinischen Studien ausgewertet, die tumorwachstumshemmende Effekte untersuchten.
Ergebnisse: Bisher existieren nur Studien mit kleinen Fallzahlen. Deshalb lassen sich derzeit nur ein paar vorsichtige Schlüsse ziehen. Zum einen scheint es so, dass eine ketogene Ernährung als Monotherapie keine tumorhemmenden Effekte auf das Wachstum fortgeschrittener Tumoren hat. Zum anderen scheint es aber einen messbaren Einfluss auf den Tumorzellstoffwechsel zu geben, wie in FDG-PET-Studien und anhand von intratumoralen Laktatmessungen bei HNO-Tumoren gezeigt werden konnte. Wahrscheinlich eignet sich eine ketogene Ernährung am besten als Unterstützung von Standardtherapien.
Schlussfolgerung: Eine ketogene Diät scheint den Tumorstoffwechsel beeinflussen zu können und käme damit als Unterstützung zytotoxischer Standardtherapien infrage.
Abstract
Background: The metabolism of malignant tumors often differs from that of benign tissue by an increased rate of glucose utilization. Dietary modulation in the form of carbohydrate restriction has recently gained large attention as a therapeutic approach to target this metabolic anomaly. Preclinical studies in tumor-bearing animals have shown that a carbohydrate-restricted diet – either in the form of calorie restriction/fasting or a low carbohydrate, high fat ketogenic diet – leads to an attenuation of tumor growth. These diets act through a variety of partly overlapping signaling pathways that are mainly triggered by four physiological shifts, namely a decrease in blood glucose and therefore insulin levels and an increase in ketone body and free fatty acid concentrations. As the translation of these findings to humans is questionable, the aim of this work was to investigate putative growth-inhibiting effects of ketogenic diets based on the clinical data published so far.
Materials and Methods: All relevant clinical studies published to date assessing tumor growth-inhibitory effects of ketogenic diets were evaluated.
Results: Due to the small patient numbers published so far only some preliminary conclusions can be drawn. While a ketogenic diet seems unable to limit the growth of advanced tumors when used as a monotherapy, it may act synergistically with cytotoxic standard therapies. A measurable effect on tumor cell metabolism has been shown in FDG-PET studies and through intra-tumoral lactate measurements.
Conclusions: A ketogenic diet seems able to influence tumor metabolism and may be an option to increase the efficacy of cytotoxic therapies.
-
Literatur
- 1 Freund E. Zur Diagnose des Carcinoms. Wiener Medizinische Blätter 1885; 9
- 2 Holm E, Kämmerer U. Lipids and Carbohydrates in Nutritional Concepts for Tumor Patients. Aktuel Ernahrungsmed 2011; 36: 286-298
- 3 Maestu I, Pastor M, Aparicio J et al. Pretreatment prognostic factors for survival in small-cell lung cancer: A new prognostic index and validation of three known prognostic indices on 341 patients. Ann Oncol 1997; 8: 547-553
- 4 Weiser MA, Cabanillas ME, Konopleva M et al. Relation between the duration of remission and hyperglycemia during induction chemotherapy for acute lymphocytic leukemia with a hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone/methotrexate-cytarabine regimen. Cancer 2004; 100: 1179-1185
- 5 McGirt MJ, Chaichana KL, Gathinji M et al. Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas. Neurosurgery 2008; 63: 286-291
- 6 Derr RL, Ye X, Islas MU et al. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol 2009; 27: 1082-1086
- 7 Lamkin DM, Spitz DR, Shahzad MMK et al. Glucose as a Prognostic Factor in Ovarian Carcinoma. Cancer 2009; 1021-1027
- 8 Erickson K, Patterson RE, Flatt SW et al. Clinically Defined Type 2 Diabetes Mellitus and Prognosis in Early-Stage Breast Cancer. J Clin Oncol 2011; 29: 54-60
- 9 Villarreal-Garza C, Shaw-Dulin R, Lara-Medina F et al. Impact of Diabetes and Hyperglycemia on Survival in Advanced Breast Cancer Patients. Exp Diabetes Res 2012; 2012: 732027
- 10 Minicozzi P, Berrino F, Sebastiani F et al. High fasting blood glucose and obesity significantly and independently increase risk of breast cancer death in hormone receptor-positive disease. Eur J Cancer 2013; 49: 3881-3888
- 11 Mayer A, Vaupel P, Struss H-G et al. Strong adverse prognostic impact of hyperglycemic episodes during adjuvant chemoradiotherapy of glioblastoma multiforme. Strahlenther Onkol 2014; 190: 933-938
- 12 Tieu MT, Lovblom LE, McNamara MG et al. Impact of glycemia on survival of glioblastoma patients treated with radiation and temozolomide. J Neurooncol 2015; 124: 119-126
- 13 Reinwald H. Die ketogene Diät: Plädoyer für einen Paradigmenwechsel. Naturheikunde 2014; 5: 9-11
- 14 Imoberdorf R, Rühlin M, Ballmer PE. Cancer and Nutrition – a Paradigma Shift. Aktuel Ernahrungsmed 2015; 40: 143-146
- 15 Dirx MJM, Zeegers MPA, Dagnelie PC et al. Energy restriction and the risk of spontaneous mammary tumors in mice: A meta-analysis. Int J Cancer 2003; 106: 766-770
- 16 Lv M, Zhu X, Wang H et al. Roles of Caloric Restriction, Ketogenic Diet and Intermittent Fasting during Initiation, Progression and Metastasis of Cancer in Animal Models: A Systematic Review and Meta-Analysis. PLoS One 2014; 9: e115147
- 17 Klein S, Wolfe RR. Carbohydrate restriction regulates the adaptive response to fasting. Am J Physiol 1992; 262: E631-636
- 18 Klement RJ. Calorie or Carbohydrate Restriction? The Ketogenic Diet as Another Option for Supportive Cancer Treatment. Oncologist 2013; 18: 1056
- 19 Klement RJ. Mimicking caloric restriction: what about macronutrient manipulation? A response to Meynet and Ricci. Trends Mol Med 2014; 20: 471-472
- 20 Warburg O, Posener K, Negelein E. Über den Stoffwechsel der Carcinomzelle. Biochem Zeitschr 1924; 152: 309-343
- 21 Warburg O. Über den Stoffwechsel der Carcinomzelle. Klin Wochenschr 1925; 4: 12-18
- 22 Warburg O, Wind F, Negelein E. Über den Stoffwechsel der Tumoren im Körper. Klin Wochenschr 1926; 5: 829-838
- 23 Klement RJ, Gonder U, Orsó E et al. Proceedings of the 2nd annual symposium of the German Society for Paleo Nutrition held in 2014. J Evo Health 2013; 1: 6
- 24 Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab 2010; 7: 7
- 25 Klement RJ, Kämmerer U. Is there a role for carbohydrate restriction in the treatment and prevention of cancer?. Nutr Metab 2011; 8: 75
- 26 Singh P, Alex JM, Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 2014; 31: 805
- 27 Fine EJ, Feinman RD. Insulin, carbohydrate restriction, metabolic syndrome and cancer. Exp Rev Endocrin Metab 2014; 10: 15-24
- 28 Woolf EC, Scheck AC. The Ketogenic Diet for the Treatment of Malignant Glioma. J Lipid Res 2015; 56: 5-10
- 29 Shimazu T, Hirschey MD, Newman J et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science (80-) 2013; 339: 211-214
- 30 Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab 2014; 25: 42-52
- 31 Shukla SK, Gebregiworgis T, Purohit V et al. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2014; 2: 18
- 32 Fine EJ, Miller A, Quadros EV et al. Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell Int 2009; 9: 14
- 33 Marchut E, Gumińska M, Kedryna T. The inhibitory effect of various fatty acids on aerobic glycolysis in Ehrlich ascites tumour cells. Acta Biochim Pol 1985; 33: 7-16
- 34 Tisdale MJ, Brennan RA. Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. Brit J Cancer 1983; 47: 293-297
- 35 Skinner R, Trujillo A, Ma X et al. Ketone bodies inhibit the viability of human neuroblastoma cells. J Pediatr Surg 2009; 44: 212-216
- 36 Maurer GD, Brucker DP, Bähr O et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 2011; 11: 315
- 37 Chang HT, Olson LK, Schwartz KA. Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutr Metab 2013; 10: 47
- 38 Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG et al. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model. PLoS One 2015; 10: e0129802
- 39 Schwartz K, Chang HT, Nikolai M et al. Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer Metab 2015; 3: 3
- 40 Otto C, Klingelhöffer C, Biggermann L et al. Analysis of the Metabolism of Ketone Bodies and Lactate by Gastrointestinal Tumor Cells in vitro. Aktuel Ernahrungsmed 2014; 39: 51-59
- 41 Allen BG, Bhatia SK, Anderson CM et al. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism. Redox Biol 2014; 2C: 963-970
- 42 Demetrius L. Of mice and men. EMBO Rep 2005; 6 Spec No: S39-44
- 43 Bozzetti F, Zupec-Kania B. Toward a cancer-specific diet. Clin Nutr 2015; Epub ahead of print
- 44 Nolop KB, Rhodes CG, Brudin LH et al. Glucose utilization in vivo by human pulmonary neoplasms. Cancer 1987; 60: 2682-2689
- 45 Brünings W. Beiträge zum Krebsproblem. 1. Mitteilung: Ueber eine diätetisch-hormonale Beeinflussung des Krebses. Münch Med Wschr 1941; 88: 117-123
- 46 Brünings W. Beiträge zum Krebsproblem. 2. Mitteilung: Klinische Anwendungen der diätetisch-hormonalen Krebsbeeinflussung (“Entzuckerungsmethode”). Münch Med Wschr 1942; 89: 71-76
- 47 Rossi-Fanelli F, Franchi F, Mulieri M et al. Effect of energy substrate manipulation on tumour cell proliferation in parenterally fed cancer patients. Clin Nutr 1991; 10: 228-232
- 48 Bozzetti F, Gavazzi C, Mariani L et al. Glucose-based total parenteral nutrition does not stimulate glucose uptake by humans tumours. Clin Nutr 2004; 23: 417-421
- 49 Fine EJ, Segal-isaacson CJ, Feinman RD et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: A pilot safety and feasibility dietary trial in 10 patients. Nutrition 2012; 28: 1028-1035
- 50 Schroeder U, Himpe B, Pries R et al. Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer. Nutr Cancer 2013; 65: 843-849
- 51 Nebeling L, Miraldi F, Shurin S et al. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 1995; 14: 202-208
- 52 Zuccoli G, Marcello N, Pisanello A et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr Metab 2010; 7: 33
- 53 Kalamian M, Zupec-Kania B, Favara BE, Liepa GU. Ketogenic diet as adjunctive therapy for brain tumors. First International Symposium on Dietary Treatments for Epilepsy and other Neurological Disorders. Poster presentation, 2008
- 54 Moore K. Using the restricted ketogenic diet for brain cancer management: comments from neuro-oncologist. In: Seyfried T, Hrsg. Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. Weinheim: Wiley; 2012: 397-400
- 55 Rieger J, Bähr O, Maurer GD et al. ERGO: A pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol 2014; 44: 1843-1852
- 56 Zhou W, Mukherjee P, Kiebish MA et al. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab 2007; 4: 5
- 57 Paoli A, Bosco G, Camporesi EM et al. Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol 2015; 6: 27
- 58 Martin L, Birdsell L, MacDonald N et al. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 2013; 31: 1539-1547
- 59 Champ CE, Volek JS, Siglin J et al. Weight Gain, Metabolic Syndrome, and Breast Cancer Recurrence: Are Dietary Recommendations Supported by the Data?. Int J Breast Cancer 2012; 2012: 506868
- 60 Klement RJ. Erheblicher Schaden für den Patienten durch Kohlenhydaratarme Ernährung. Wo ist die Evidenz? Leserbrief zum Beitrag “Krebsdiäten”. FORUM 2014; 29: 400 – 404 FORUM 2015; 30: 23-24
- 61 Wilder RM. The effect of ketonemia on the course of epilepsy. Mayo Clin Bull 1921; 2: 307
- 62 Cervenka MC, Terao NN, Bosarge JL et al. E-mail management of the modified Atkins Diet for adults with epilepsy is feasible and effective. Epilepsia 2012; 53: 728-732
- 63 Thakur KT, Probasco JC, Hocker SE et al. Ketogenic diet for adults in super-refractory status epilepticus. Neurology 2014; 82: 665-670
- 64 Strowd RE, Cervenka MC, Henry BJ et al. Glycemic modulation in neuro-oncology: experience and future directions using a modified Atkins diet for high-grade brain tumors. Neurooncol Pr 2015; 1-10
- 65 Meidenbauer JJ, Mukherjee P, Seyfried TN. The glucose ketone index calculator: a simple tool to monitor therapeutic efficacy for metabolic management of brain cancer. Nutr Metab 2015; 12: 12