Subscribe to RSS
DOI: 10.1055/s-0042-117721
Effects of Glucocorticoids on Bone: What we can Learn from Pediatric Endogenous Cushing’s Syndrome
Publication History
received 30 August 2016
accepted 08 September 2016
Publication Date:
11 October 2016 (online)
Abstract
Chronic exposure to supraphysiologic levels of glucocorticoids (GCs) is associated with impaired bone mineral density, an increase in fracture rates, and, in growing children, compromised linear growth. GCs inhibit bone formation in part by decreasing the number of osteoblasts and by increasing bone resorption by stimulating osteoclasts. While GCs are used to treat many chronic diseases, it is difficult to isolate the effects of the steroids on the bone from the effects of the underlying disease itself. Investigation into the effects of GC exposure on the bone in endogenous Cushing syndrome have contributed to our understanding of bone microarchitecture, growth, healing, and regeneration. We now know that GCs negatively impact bone marrow derived-mesenchymal stromal cells. In children with Cushing syndrome, the potential reversibility of deleterious effects of chronic GC exposure on bone provides insight into the pathophysiology behind pure GC excess.
-
References
- 1 Benedek TG. History of the development of corticosteroid therapy. Clin Exp Rheumatol 2011; 29: S5-S12
- 2 Harris E, Tiganescu A, Tubeuf S, Mackie SL. The prediction and monitoring of toxicity associated with long-term systemic glucocorticoid therapy. Curr Rheumatol Rep 2015; 17: 513
- 3 Libuit LG, Karageorgiadis AS, Sinaii N, Nguyen May NM, Keil MF, Lodish MB, Stratakis CA. A gender-dependent analysis of Cushing’s disease in childhood: pre- and postoperative follow-up. Clin Endocrinol (Oxf) 2015; 83: 72-77
- 4 Orth DN. Cushing’s Syndrome. N Engl J Med 1995; 332: 791-803
- 5 Tsigos C, Chrousos GP. Differential diagnosis and management of Cushing’s Syndrome. Annu Rev Med.ev Med 1996; 47: 443-461
- 6 Dupuis CC, Storr HL, Perry LA, Ho JTF, Ahmed L, Ong KK, Dunger DB, Monson JP, Grossman AB, Besser GM, Savage MO. Abnormal puberty in paediatric Cushing’s disease: relationship with adrenal androgen, sex hormone binding globulin and gonadotrophin concentrations. Clin Endocrinol (Oxf) 2007; 66: 838-843
- 7 Belaya ZE, Hans D, Rozhinskaya LY, Dragunova NV, Sasonova NI, Solodovnikov AG, Tsoriev TT, Dzeranova LK, Melnichenko GA, Dedov II. The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing’s syndrome. Arch Osteoporos 2015; 10: 1-9
- 8 Jeong I, Oh M, Kim JH, Cho JH, Choi J-H, Yoo H-W. Long-term follow-up on Cushing disease patient after transsphenoidal surgery. Ann Pediatr Endocrinol Metab 2014; 19: 164-168
- 9 Greening JE, Storr HL, McKenzie SA, Davies KM, Martin L, Grossman AB, Savage MO. Linear growth and body mass index in pediatric patients with Cushing’s disease or simple obesity. J Endocrinol Invest 2006; 29: 885-887
- 10 London E, Lodish M, Keil M, Lyssikatos C, de la Luz Sierra M, Nesterova M, Stratakis CA. Not all glucocorticoid-induced obesity is the same: differences in adiposity among various diagnostic groups of Cushing syndrome. Horm Metab Res 2014; 46: 897-903
- 11 Baxter-Jones ADG, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: An estimation of peak bone mass. J Bone Miner Res 2011; 26: 1729-1739
- 12 Foley S, Quinn S, Jones G. Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking. Bone 2009; 44: 752-757
- 13 Matkovic V, Jelic T, Wardlaw GM, Llich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis: Inference from a cross-sectional model. J Clin Invest 1994; 93: 799-808
- 14 Civitelli R. Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys 2008; 473: 188-192
- 15 Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol 2011; 6: 121-145
- 16 Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev 2016; 96: 409-447
- 17 Falhammar H, Filipsson Nyström H, Wedell A, Brismar K, Thorén M. Bone mineral density, bone markers, and fractures in adult males with congenital adrenal hyperplasia. Eur J Endocrinol 2013; 168: 331-341
- 18 Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 2007; 18: 1319-1328
- 19 Jia D, O’Brien CA, Stewart SA, Manolagas SC, Weinstein RS. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 2006; 147: 5592-5599
- 20 Henneicke H, Gasparini SJ, Brennan-Speranza TC, Zhou H, Seibei MJ. Glucocorticoids and bone: local effects and systemic implications. Trends Endocrinol Metab 2014; 25: 197-211
- 21 Sasaki N, Kusano E, Ando Y, Yano K, Tsuda E, Asano Y. Glucocorticoid decreases circulating osteoprotegerin (OPG): possible mechanism for glucocorticoid induced osteoporosis. Nephrol Dial Transplant 2001; 16: 479-482
- 22 Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 2011; 17: 1231-1234
- 23 Teitelbaum SL. Glucocorticoids and the osteoclast. Clin Exp Rheumatol 33: S37-S39
- 24 He M, Wang J, Wang G, Tian Y, Jiang L, Ren Z, Qiu C, Fu Q. Effect of glucocorticoids on osteoclast function in a mouse model of bone necrosis. Mol Med Rep 2016; 14: 1054-1060
- 25 Weinstein RS, Chen J-R, Powers CC, Stewart SA, Landes RD, Bellido T, Jilka RL, Parfitt AM, Manolagas SC. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest 2002; 109: 1041-1048
- 26 O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC, Weinstein RS. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 2004; 145: 1835-1841
- 27 Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 1998; 102: 274-282
- 28 Gabet Y, Noh T, Lee C, Frenkel B. Developmentally regulated inhibition of cell cycle progression by glucocorticoids through repression of cyclin A transcription in primary osteoblast cultures. J Cell Physiol 2011; 226: 991-998
- 29 Guañabens N, Gifre L, Peris P. The role of Wnt signaling and sclerostin in the pathogenesis of glucocorticoid-induced osteoporosis. Curr Osteoporos Rep 2014; 12: 90-97
- 30 Morimoto E, Li M, Khalid AB, Krum SA, Chimge N-O, Frenkel B. Glucocorticoids Hijack Runx2 to Stimulate Wif1 for Suppression of Osteoblast Growth and Differentiation. J Cell Physiol 2016; [Epub ahead of print]
- 31 Pereira RC, Delany AM, Canalis E. Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: correlation with CCAAT-enhancer binding protein expression. Bone 2002; 30: 685-691
- 32 Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, Ostermay S, Schinke T, Spanbroek R, Zaiss MM, Angel PE, Lerner UH, David JP, Reichardt HM, Amling M, Schütz G, Tuckermann JP. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab 2010; 11: 517-531
- 33 Yao W, Cheng Z, Busse C, Pham A, Nakamura MC, Lane NE. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum 2008; 58: 1674-1686
- 34 Pereira RM, Delany AM, Canalis E. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture. Bone 2001; 28: 484-490
- 35 Lecka-Czernik B, Gubrij I, Moerman EJ, Kajkenova O, Lipschitz DA, Manolagas SC, Jilka RL. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem 1999; 74: 357-371
- 36 Chang DJ, Ji C, Kim KK, Casinghino S, McCarthy TL, Centrella M. Reduction in transforming growth factor beta receptor I expression and transcription factor CBFa1 on bone cells by glucocorticoid. J Biol Chem 1998; 273: 4892-4896
- 37 Delany AM, Gabbitas BY, Canalis E. Cortisol downregulates osteoblast alpha 1 (I) procollagen mRNA by transcriptional and posttranscriptional mechanisms. J Cell Biochem 1995; 57: 488-494
- 38 Subramaniam M, Colvard D, Keeting PE, Rasmussen K, Riggs BL, Spelsberg TC. Glucocorticoid regulation of alkaline phosphatase, osteocalcin, and proto-oncogenes in normal human osteoblast-like cells. J Cell Biochem 1992; 50: 411-424
- 39 Tu J, Henneicke H, Zhang Y, Stoner S, Cheng TL, Schindeler A, Chen D, Tuckermann J, Cooper MS, Seibel MJ, Zhou H. Disruption of glucocorticoid signaling in chondrocytes delays metaphyseal fracture healing but does not affect normal cartilage and bone development. Bone 2014; 69: 12-22
- 40 Zaman F, Chrysis D, Huntjens K, Chagin A, Takigawa M, Fadeel B, Sävendahl L. Dexamethasone differentially regulates Bcl-2 family proteins in human proliferative chondrocytes: role of pro-apoptotic Bid. Toxicol Lett 2014; 224: 196-200
- 41 Lui JC, Nilsson O, Baron J. Growth plate senescence and catch-up growth. Endocr Dev 2011; 21: 23-29
- 42 Graeff C, Marin F, Petto H, Kayser O, Reisinger A, Peña J, Zysset P, Glüer C. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone 2013; 52: 568-577
- 43 Chappard D, Legrand E, Basle MF, Fromont P, Racineux JL, Rebel A, Audran M. Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J Bone Miner Res 1996; 11: 676-685
- 44 Ward LM, Rauch F, White C, Glorieux FH. Ilial histomorphometry in children with osteoporosis secondary to chronic illness. J Bone Min Res 2004; 19: SU522
- 45 Hatakeyama Y, Miyakoshi N, Kasukawa Y, Watanabe A, Hirayama M, Senma S, Ono I, Shimada Y. Vertebral histomorphometry in a child with glucocorticoid-induced osteoporosis. Tohoku J Exp Med 2012; 227: 263-267
- 46 Fields AJ, Eswaran SK, Jekir MG, Keaveny TM. Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res 2009; 24: 1523-1530
- 47 Ferrari P, Bianchetti MG, Sansonnens A, Frey FJ. Modulation of Renal Calcium Handling by 11 -Hydroxysteroid Dehydrogenase Type 2. J Am Soc Nephrol 2002; 13: 2540-2546
- 48 Diaz de Barboza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. World J Gastroenterol 2015; 21: 7142-7154
- 49 Hasselgren PO. Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 1999; 2: 201-205
- 50 Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, Boivin CM, Shaw NJ. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 2004; 35: 965-972
- 51 Steffens JP, Herrera BS, Coimbra LS, Stephens DN, Rossa C, Spolidorio LC, Kantarci A, Van Dyke TE. Testosterone regulates bone response to inflammation. Horm Metab Res 2014; 46: 193-200
- 52 Miller TL, Mayo KE. Glucocorticoids regulate pituitary growth hormone-releasing hormone receptor messenger ribonucleic acid expression. Endocrinology 1997; 138: 2458-2465
- 53 Paek I, Axel R. Glucocorticoids enhance stability of human growth hormone mRNA. Mol Cell Biol 1987; 7: 1496-1507
- 54 Carroll PV, Monson JP, Grossman AB, Besser GM, Plowman PN, Afshar F, Savage MO. Successful treatment of childhood-onset Cushing’s disease is associated with persistent reduction in growth hormone secretion. Clin Endocrinol (Oxf) 2004; 60: 169-174
- 55 Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 2008; 29: 535-559
- 56 Wüster C, Abs R, Bengtsson BA, Bennmarker H, Feldt-Rasmussen U, Hernberg-Ståhl E, Monson JP, Westberg B, Wilton P. The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Miner Res 2001; 16: 398-405
- 57 Vakili H, Cattini PA. The hidden but positive role for glucocorticoids in the regulation of growth hormone-producing cells. Mol Cell Endocrinol 2012; 363: 1-9
- 58 Canalis E. Mechanisms of Glucocorticoid Action in Bone: Implications to Glucocorticoid-Induced Osteoporosis. J Clin Endocrinol Metab 1996; 81: 3441-3447
- 59 Hock JM, Centrella M, Canalis E. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology 1988; 122: 254-260
- 60 Canalis E, Rydziel S, Delany AM, Varghese S, Jeffrey JJ. Insulin-like growth factors inhibit interstitial collagenase synthesis in bone cell cultures. Endocrinology 1995; 136: 1348-1354
- 61 Playford MP, Bicknell D, Bodmer WF, Macaulay VM. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci U S A 2000; 97: 12103-12108
- 62 Pereira RC, Blanquaert F, Canalis E. Cortisol Enhances the Expression of mac25/Insulin-Like Cultured Osteoblasts. Endocrinology 1999; 140: 228-232
- 63 Pereira RC, Durant D, Canalis E. Transcriptional regulation of connective tissue growth factor by cortisol in osteoblasts. Am J Physiol Endocrinol Metab 2000; 279: E570-E576
- 64 Fuller K, Owens J, Chambers TJ. The Effect of Hepatocyte Growth Factor on the Behaviour of Osteoclasts. Biochem Biophys Res Communcations 1995; 212: 334-340
- 65 Feber J, Gaboury I, Ni A, Alos N, Arora S, Bell L, Blydt-Hansen T, Clarson C, Filler G, Hay J, Hebert D, Lentle B, Matzinger M, Midgley J, Moher D, Pinsk M, Rauch F, Rodd C, Shenouda N, Siminoski K, Ward LM. Skeletal findings in children recently initiating glucocorticoids for the treatment of nephrotic syndrome. Osteoporos Int 2012; 23: 751-760
- 66 Tõth M, Grossman A. Glucocorticoid-induced osteoporosis: Lessons from Cushing’s syndrome. Clin Endocrinol (Oxf) 2013; 79: 1-11
- 67 Rüegsegger P, Medici TC, Anliker M. Corticosteroid-induced bone loss. A longitudinal study of alternate day therapy in patients with bronchial asthma using quantitative computed tomography. Eur J Clin Pharmacol 1983; 25: 615-620
- 68 Hansen KE, Kleker B, Safdar N, Bartels CM. A systematic review and meta-analysis of glucocorticoid-induced osteoporosis in children. Semin Arthritis Rheum 2014; 44: 47-54
- 69 Scommegna S, Greening JP, Storr HL, Davies KM, Shaw NJ, Monson JP, Grossman AB, Savage MO. Bone mineral density at diagnosis and following successful treatment of pediatric Cushing’s disease. J Endocrinol Invest 2005; 28: 231-235
- 70 Di Somma C, Pivonello R, Loche S, Faggiano A, Marzullo P, Sarno A, Di Klain M, Salvatore M, Lombardi G, Colao A. Severe impairment of bone mass and turnover in cushings’s disease comparison between childhood onset and adulthood onset disease. Clin Endocrinol (Oxf) 2002; 56: 153-158
- 71 Leong GM, Abad V, Charmandari E, Reynolds JC, Hill S, Chrousos GP, Nieman LK. Effects of Child- and Adolescent-Onset Endogenous Cushing Syndrome on Bone Mass, Body Composition, and Growth: A 7-Year Prospective Study Into Young Adulthood. J Bone Miner Res 2006; 22: 110-118
- 72 Lodish MB, Hsiao H, Sermbis A, Sinaii N, Rothenbuhler A, Keil MF, Boikos SA, Reynolds C, Stratakis CA. Effects of Cushing Disease on Bone Mineral Density in a Pediatric Population. J Pediatr 2010; 156: 1001-1005
- 73 Gafni RI, McCarthy EF, Hatcher T, Meyers JL, Inoue N, Reddy C, Weise M, Barnes KM, Abad V, Baron J. Recovery from osteoporosis through skeletal growth: early bone mass acquisition has little effect on adult bone density. FASEB J 2002; 16: 736-738
- 74 Luisetto G, Zangari M, Camozzi V, Boscaro M, Sonino N, Fallo F. Recovery of bone mineral density after surgical cure, but not by ketoconazole treatment, in Cushing’s syndrome. Osteoporos Int 2001; 12: 956-960
- 75 Manning PJ, Evans MC, Reid IR. Normal bone mineral density following cure of Cushing’s syndrome. Clin Endocrinol (Oxf) 1992; 36: 229-234
- 76 Di Somma C, Pivonello R, Loche S, Faggiano A, Klain M, Salvatore M, Lombardi G, Colao A. Effect of 2 years of cortisol normalization on the impaired bone mass and turnover in adolescent and adult patients with Cushing’s disease: A prospective study. Clin Endocrinol (Oxf) 2003; 58: 302-308
- 77 Abad V, Chrousos GP, Reynolds JC, Nieman LK, Hill SC, Weinstein RS, Leong GM. Glucocorticoid excess during adolescence leads to a major persistent deficit in bone mass and an increase in central body fat. J Bone Miner Res 2001; 16: 1879-1885
- 78 Leong GM, Mercado-Asis LB, Reynolds JC, Hill SC, Oldfield EH, Chrousos GP. The effect of Cushing’s disease on bone mineral density, body composition, growth, and puberty: a report of an identical adolescent twin pair. J Clin Endocrinol Metab 1996; 81: 1905-1911
- 79 Tauchmanova L, Pivonello R, Somma C, Di Rossi R, De Martino MC, Camera L, Klain M, Salvatore M, Lombardi G, Colao A. Bone demineralization and vertebral fractures in endogenous cortisol excess: Role of disease etiology and gonadal status. J Clin Endocrinol Metab 2006; 91: 1779-1784
- 80 Steinbuch M, Youket TE, Cohen S. Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos Int 2004; 15: 323-328
- 81 Huber AM, Gaboury I, Cabral DA, Lang B, Ni A, Stephure D, Taback S, Dent P, Ellsworth J, LeBlanc C, Saint-Cyr C, Scuccimarri R, Hay J, Lentle B, Matzinger M, Shenouda N, Moher D, Rauch F, Siminoski K, Ward LM. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res (Hoboken) 2010; 62: 516-526
- 82 Faggiano A, Pivonello R, Filippella M, Di Somma C, Orio F, Lombardi G, Colao A. Spine abnormalities and damage in patients cured from Cushing’s disease. Pituitary 2001; 4: 153-162
- 83 Morelli V, Eller-Vainicher C, Palmieri S, Cairoli E, Salcuni AS, Scillitani A, Carnevale V, Corbetta S, Arosio M, Della Casa S, Muscogiuri G, Spada A, Chiodini I. Prediction of Vertebral Fractures in Patients With Monolateral Adrenal Incidentalomas. J Clin Endocrinol Metab 2016; 101: 2768-2775
- 84 Homik J, Cranney A, Shea B, Tugwell P, Wells G, Adachi R, Suarez-Almazor M. Bisphosphonates for steroid induced osteoporosis. Cochrane Database Syst Rev 2000; CD001347
- 85 Weinstein RS. Glucocorticoid-Induced Bone Disease. N Engl J Med 2011; 365: 62-70
- 86 van Staa TP, Cooper C, Leufkens HGM, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res 2003; 18: 913-918
- 87 Compston J. Management of glucocorticoid-induced osteoporosis. Nat Rev Rheumatol 2010; 6: 82-88
- 88 Ward L, Tricco AC, Phuong P, Cranney A, Barrowman N, Gaboury I, Rauch F, Tugwell P, Moher D. Bisphosphonate therapy for children and adolescents with secondary osteoporosis. Cochrane Database Syst Rev 2007;
- 89 Lui JC, Baron J. Effects of glucocorticoids on Growth Plate. Endocr Dev 2011; 20: 187-193
- 90 Kelly HW, Sternberg AL, Lescher R, Fuhlbrigge AL, Williams P, Zeiger RS, Raissy HH, Van Natta ML, Tonascia J, Strunk RC. Effect of Inhaled Glucocorticoids in Childhood on Adult Height. N Engl J Med 2012; 367: 904-912
- 91 Nieman LK, Biller BMK, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM, Edwards H. The diagnosis of Cushing’s syndrome: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2008; 93: 1526-1540
- 92 Magiakou MA, Mastorakos G, Gomez MT, Rose SR, Chrousos GP. Suppressed spontaneous and stimulated growth hormone secretion in patients with Cushing’s disease before and after surgical cure. J Clin Endocrinol Metab 1994; 78: 131-137
- 93 Devoe DJ, Miller WL, Conte FA, Kaplan SL, Grumbach MM, Rosenthal SM, Wilson CB, Gitelman SE. Long-term outcome in children and adolescents after transsphenoidal surgery for Cushing’s disease. J Clin Endocrinol Metab 1997; 82: 3196-3202
- 94 Lebrethon M-C, Grossman AB, Afshar F, Plowman PN, Besser GM, Savage MO. Linear growth and final height after treatment for Cushing’s disease in childhood. J Clin Endocrinol Metab 2000; 85: 3262-3265
- 95 Davies JH, Storr HL, Davies K, Monson JP, Besser GM, Afshart F, Plowman PN, Grossman AB, Savage MO. Final adult height and body mass index after cure of paediatric Cushing’s disease. Clin Endocrinol (Oxf) 2005; 62: 466-472
- 96 Allen DB. Growth Suppression by Glucocorticoid Therapy. Endocrinol Metab Clin North Am 1996; 25: 699-717
- 97 Acharya SV, Gopal RA, Lila A, Menon PS, Bandgar TR, Shah NS. Bone age and factors affecting skeletal maturation at diagnosis of paediatric Cushing’s disease. Pituitary 2010; 13: 355-360
- 98 Magiakou MA, Mastorakos G, Oldfield EH, Gomez MT, Doppman JL, Cutler GB, Nieman LK, Chrousos GP. Cushing’s syndrome in children and adolescents: Presentation, Diagnosis, and Therapy. N Engl J Med 1994; 331: 629-636
- 99 Peters CJ, Ahmed ML, Storr HL, Davies KM, Martin LJ, Allgrove J, Grossman AB, Savage MO. Factors influencing skeletal maturation at diagnosis of paediatric Cushing’s disease. Horm Res 2007; 68: 231-235
- 100 Lodish MB, Gourgari E, Sinaii N, Hill S, Libuit L, Mastroyannis S, Keil M, Batista DL, Stratakis CA. Skeletal maturation in children with cushing syndrome is not consistently delayed: The role of corticotropin, obesity, and steroid hormones, and the effect of surgical cure. J Pediatr 2014; 164: 801-806
- 101 Vandewalle S, Taes Y, Fiers T, Toye K, Van Caenegem E, Kaufman J, De Schepper J. Relation of adrenal-derived steroids with bone maturation, mineral density and geometry in healthy prepubertal and early pubertal boys. Bone 2014; 69: 39-46
- 102 Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C. Androgens and bone. Endocr Rev 2004; 25: 389-425