Synthesis 2022; 54(22): 4843-4863
DOI: 10.1055/s-0042-1751368
review

The Properties, Synthesis, and Materials Applications of 1,4-Dithiins and Thianthrenes

,
S.E. was supported by a Training Grant (T32-ES007020) from the National Institute of Environmental Health Sciences.


Abstract

1,4-Dithiin and its dibenzo-analogue, thianthrene, represent a class of non-aromatic, sulfur-rich heterocycles. Their unique properties, stemming from both their non-planar structures and reversible one- and two-electron oxidations, serve as primary motivators for their use in the development of new materials. The applications of 1,4-dithiins and thianthrenes are rich and diverse, having been used for energy storage and harvesting, and the synthesis of phosphorescent compounds and porous polymers, among other uses. This review offers first an overview of the properties of 1,4-dithiin and thianthrene. Next, we describe enabling synthetic methodology to access 1,4-dithiins and thianthrenes with various substitution patterns. Lastly, the utility of 1,4-dithiin and thianthrene in the construction and design of new materials is detailed using select literature examples.

1 Introduction

2 Properties of 1,4-Dithiins and Thianthrenes

3 Synthesis of 1,4-Dithiins and Thianthrenes

3.1 Synthesis of 1,4-Dithiins

3.2 Synthesis of Thianthrenes

4 Application of 1,4-Dithiins and Thianthrenes in Materials

4.1 Thianthrene-Containing Polymers

4.2 Thianthrene in Redox-Active Materials

4.3 Thianthrenes and 1,4-Dithiins in Supramolecular Chemistry and Self-Assembly

4.4 Thianthrenes in Phosphorescent Materials

4.5 Thianthrenes with Other Interesting Photophysical Properties

4.6 Thianthrenes in the Synthesis of Non-natural Products

5 Conclusion



Publication History

Received: 06 May 2022

Accepted after revision: 28 July 2022

Article published online:
21 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Borbulevych OY, Shishkin OV. J. Mol. Struct. 1998; 446: 11
  • 2 Kim S, Kwon Y, Lee JP, Choi SY, Choo J. J. Mol. Struct. 2003; 655: 451
  • 3 Nishinaga T, Wakamiya A, Komatsu K. Tetrahedron Lett. 1999; 40: 4375
  • 4 Tinker LA, Bard AJ. J. Am. Chem. Soc. 1979; 101: 2316
  • 5 Kobayashi K, Gajurel CL. Sulfur Rep. 1986; 7: 123
  • 6 Joule JA. Thianthrenes. In Advances in Heterocyclic Chemistry, Vol. 48. Katritzky AR. Academic Press; Oxford: 1990: 301-393
  • 7 Gallaher KL, Bauer SH. J. Chem. Soc., Faraday Trans. 2 1975; 71: 1173
  • 8 Beck J, Bredow T, Tjahjanto RT. Z. Naturforsch. B 2009; 64: 145
  • 9 Tani H, Kawada Y, Azuma N, Ono N. Tetrahedron Lett. 1994; 35: 7051
  • 10 Howell PA, Curtis RM, Lipscomb WN. Acta Crystallogr. 1954; 7: 498
  • 11 Saebø S, Radom L, Ritchie GL. D. J. Mol. Struct. THEOCHEM 1984; 108: 59
  • 12 Hosoya S. Acta Crystallogr. 1963; 16: 310
  • 13 Pelloni S, Faglioni F, Soncini A, Ligabue A, Lazzeretti P. Chem. Phys. Lett. 2003; 375: 583
  • 14 Nishinaga T, Wakamiya A, Komatsu K. Chem. Commun. 1999; 777
  • 15 Boduszek B, Shine HJ. J. Org. Chem. 1988; 53: 5142
  • 16 Bock H, Rauschenbach A, Näther C, Kleine M, Havlas Z. Chem. Ber. 1994; 127: 2043
  • 17 Shine HJ, Murata Y. J. Am. Chem. Soc. 1969; 91: 1872
  • 18 Andersen ML, Nielsen MF, Hammerich O, Bakken AK, Pedersen SU, Niinistö L, Styring S, Tommos C, Warncke K, Wood BR. Acta Chem. Scand. 1997; 51: 94
  • 19 Glass RS, Britt WJ, Miller WN, Wilson GS. J. Am. Chem. Soc. 1973; 95: 2375
  • 20 Murata Y, Shine HJ. J. Org. Chem. 1969; 34: 3368
  • 21 Shine HJ, Piette L. J. Am. Chem. Soc. 1962; 84: 4798
  • 22 Johnson TB, Moran RC, Kohmann EF. J. Am. Chem. Soc. 1913; 35: 447
  • 23 Shine HJ, Dais CF, Small RJ. J. Org. Chem. 1964; 29: 21
  • 24 Tang S, Zhang L, Ruan H, Zhao Y, Wang X. J. Am. Chem. Soc. 2020; 142: 7340
  • 25 Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
  • 26 Levi LE. Chem. News 1890; 62: 216
  • 27 Grant AS, Faraji-Dana S, Graham E. J. Sulfur Chem. 2009; 30: 135
  • 28 Levanova EP, Nikonova VS, Grabel’nykh VA, Russavskaya NV, Albanov AI, Rozentsveig IB, Korchevin NA. Russ. J. Org. Chem. 2016; 52: 1070
  • 29 Nakayama J, Motoyama H, Machida H, Shimomura M, Hoshino M. Heterocycles 1984; 22: 1527
  • 30 Voronkov MG, Shagun LG, Usov VA, Protasova LE. Chem. Heterocycl. Compd. 1987; 23: 355
  • 31 Verboom W, Schoufs M, Meijer J, Verkruijsse HD, Brandsma L. Recl. Trav. Chim. Pay-Bas 1978; 97: 244
  • 32 Zilverschoon A, Meijer J, Vermeer P, Brandsma L. Recl. Trav. Chim. Pay-Bas. 1975; 94: 163
  • 33 Peña J, Talavera G, Waldecker B, Alcarazo M. Chem. Eur. J. 2017; 23: 75
  • 34 Meijer J, Vermeer P, Verkruijsse HD, Brandsma L. Recl. Trav. Chim. Pay-Bas 1973; 92: 1326
  • 35 Braverman S, Cherkinsky M, Birsa ML, Tichman S, Goldberg I. Tetrahedron Lett. 2001; 42: 7485
  • 36 Braverman S, Cherkinsky M, Birsa ML, Gottlieb HE. Synthesis 2003; 849
  • 37 Baker RH, Barkenbus C. J. Am. Chem. Soc. 1936; 58: 262
  • 38 Parham WE, Mayo GL. O, Gadsby B. J. Am. Chem. Soc. 1959; 81: 5993
  • 39 Hartke K, Quante J, Kämpchen T. Liebigs Ann. Chem. 1980; 1482
  • 40 Ghosal S, Nirmal M, Medina JC, Kyler KS. Synth. Commun. 1987; 17: 1683
  • 41 Bähr G, Schleitzer G. Chem. Ber. 1955; 88: 1771
  • 42 Bähr G, Schleitzer G. Chem. Ber. 1957; 90: 438
  • 43 Simmons HE, Vest RD, Blomstrom DC, Roland JR, Cairns TL. J. Am. Chem. Soc. 1962; 84: 4746
  • 44 Simmons HE, Vest RD, Vladuchick SA, Webster OW. J. Org. Chem. 1980; 45: 5113
  • 45 Sakai T, Seo S, Matsuoka J, Mori Y. J. Org. Chem. 2013; 78: 10978
  • 46 Arisawa M, Ichikawa T, Tanii S, Yamaguchi M. Synthesis 2016; 48: 3107
  • 47 Katritzky AR, Nikonov GN, Tymoshenko DO, Moyano EL, Steel PJ. Heterocycles 2002; 57: 483
  • 48 Wen L.-R, Men L.-B, He T, Ji G.-J, Li M. Chem. Eur. J. 2014; 20: 5028
  • 49 Parham WE, Nicholson I, Traynelis VJ. J. Am. Chem. Soc. 1956; 78: 850
  • 50 Schoufs M, Meyer J, Vermeer P, Brandsma L. Recl. Trav. Chim. Pay-Bas 1977; 96: 259
  • 51 Castelló-Micó A, Nafe J, Higashida K, Karaghiosoff K, Gingras M, Knochel P. Org. Lett. 2017; 19: 360
  • 52 Amelichev SA, Konstantinova LS, Obruchnikova NV, Rakitin OA, Rees CW. Org. Lett. 2006; 8: 4529
  • 53 Amelichev SA, Konstantinova LS, Lyssenko KA, Rakitin OA, Rees CW. Org. Biomol. Chem. 2005; 3: 3496
  • 54 Arisawa M, Sawahata K, Ichikawa T, Yamaguchi M. Organometallics 2018; 37: 3174
  • 55 Giordan J, Bock H. Chem. Ber. 1982; 115: 2548
  • 56 Fries K, Koch H, Slukenbrock H. Liebigs Ann. Chem. 1929; 468: 162
  • 57 Fries K, Volk W. Ber. Dtsch. Chem. Ges. 1909; 42: 1170
  • 58 Edson JB, Knauss DM. J. Polym. Sci., Part A: Polym. Chem. 2004; 42: 6353
  • 59 Ariyan ZS, Martin RL. J. Chem. Soc., Perkin Trans. 1 1972; 1687
  • 60 Still IW. J, Sayeed VA. Synth. Commun. 1983; 13: 1181
  • 61 Marti C, Irurre J, Alvarez-Larena A, Piniella JF, Brillas E, Fajarí L, Alemán C, Juliá L. J. Org. Chem. 1994; 59: 6200
  • 62 Ong WJ, Swager TM. Nat. Chem. 2018; 10: 1023
  • 63 Liu J, Cui J, Vilela F, He J, Zeller M, Hunter AD, Xu Z. Chem. Commun. 2015; 51: 12197
  • 64 Hirabayashi K, Ebine K, Kawabata Y, Yoshida Y, Shimizu T. Heteroat. Chem. 2018; 29: e21459
  • 65 Ong WJ, Bertani F, Dalcanale E, Swager TM. Synthesis 2017; 49: 358
  • 66 Shine HJ, Silber JJ, Bussey RJ, Okuyama T. J. Org. Chem. 1972; 37: 2691
  • 67 Bosch E, Kochi JK. J. Chem. Soc., Perkin Trans. 1 1995; 1057
  • 68 Speicher S, Plutschack MN, Ritter T. Org. Synth. 2021; 98: 531
  • 69 Amani K, Zolfigol MA, Ghorbani-Choghamarani A, Hajjami M. Monatsh. Chem. 2009; 140: 65
  • 70 Bohle DS, Glassbrenner PA, Hansert B. Tetrahedron Lett. 1997; 38: 2425
  • 71 Kropp PJ, Breton GW, Fields JD, Tung JC, Loomis BR. J. Am. Chem. Soc. 2000; 122: 4280
  • 72 Folsom HE, Castrillón J. Synth. Commun. 1992; 22: 1799
  • 73 Roh KR, Kim KS, Kim YH. Tetrahedron Lett. 1991; 32: 793
  • 74 Xu L, Cheng J, Trudell ML. J. Org. Chem. 2003; 68: 5388
  • 75 McKillop A, Kemp D. Tetrahedron 1989; 45: 3299
  • 76 Li X, Wang K, Shi YZ, Zhang M, Le DG, Liu W, Zheng CJ, Ou XM, Zhang XH. J. Mater. Chem. C 2018; 6: 9152
  • 77 Drushel HV, Miller JF. Anal. Chem. 1958; 30: 1271
  • 78 Morita H, Kawaguchi H, Yoshimura T, Tsukurimichi E, Shimasaki C, Horn E. Chem. Eur. J. 2000; 6: 3976
  • 79 Lovell JM, Joule JA. J. Chem. Soc., Perkin Trans. 1 1996; 2391
  • 80 Gilman H, Swayampati DR. J. Am. Chem. Soc. 1955; 77: 5944
  • 81 Lovell JM, Beddoes RL, Joule JA. Tetrahedron 1996; 52: 4745
  • 82 Sheikh MC, Iwasawa T, Nakajima A, Kitao A, Tsubaki N, Miyatake R, Yoshimura T, Morita H. Synthesis 2014; 46: 42
  • 83 Scholl R, Seer C. Ber. Dtsch. Chem. Ges. 1911; 44: 1233
  • 84 Kim K, Hull VJ, Shine HJ. J. Org. Chem. 1974; 39: 2534
  • 85 Silber JJ, Shine HJ. J. Org. Chem. 1971; 36: 2923
  • 86 Juliá F, Shao Q, Duan M, Plutschack MB, Berger F, Mateos J, Lu C, Xue X.-S, Houk KN, Ritter T. J. Am. Chem. Soc. 2021; 143: 16041
  • 87 Engl PS, Häring AP, Berger F, Berger G, Pérez-Bitrián A, Ritter T. J. Am. Chem. Soc. 2019; 141: 13346
  • 88 Li J, Chen J, Sang R, Ham WS, Plutschack MB, Berger F, Chabbra S, Schnegg A, Genicot C, Ritter T. Nat. Chem. 2020; 12: 56
  • 89 Chen J, Li J, Plutschack MB, Berger F, Ritter T. Angew. Chem. Int. Ed. 2020; 132: 5665
  • 90 Macdonald EK, Shaver MP. Polym. Int. 2015; 64: 6
  • 91 Liu J.-G, Nakamura Y, Shibasaki Y, Ando S, Ueda M. Macromolecules 2007; 40: 4614
  • 92 Nakagawa Y, Suzuki Y, Higashihara T, Ando S, Ueda M. Macromolecules 2011; 44: 9180
  • 93 You N.-H, Suzuki Y, Higashihara T, Ando S, Ueda M. Polymer 2009; 50: 789
  • 94 Robb MJ, Knauss DM. J. Polym. Sci., Part A: Polym. Chem. 2009; 47: 2453
  • 95 Suzuki Y, Murakami K, Ando S, Higashihara T, Ueda M. J. Mater. Chem. 2011; 21: 15727
  • 96 Zhang Y, Liu J, Wu X, Bi H, Jiang G, Zhi X.-X, Qi L, Zhang X. J. Polym. Res. 2019; 26: 2
  • 97 Zhao X, Li S, Liu X, Yang X, Zhang Y, Yu R, Zuo X, Huang W. Phosphorus, Sulfur Silicon Relat. Elem. 2018; 193: 33
  • 98 You N.-H, Higashihara T, Ando S, Ueda M. J. Polym. Sci., Part A: Polym. Chem. 2010; 48: 2604
  • 99 Bernardo P, Drioli E, Golemme G. Ind. Eng. Chem. Res. 2009; 48: 4638
  • 100 Du N, Robertson GP, Pinnau I, Guiver MD. Macromolecules 2010; 43: 8580
  • 101 Felemban SA, Bezzu CG, Comesaña-Gándara B, Jansen JC, Fuoco A, Esposito E, Carta M, McKeown NB. J. Mater. Chem. A 2021; 9: 2840
  • 102 McKeown NB. Polymer 2020; 202: 122736
  • 103 Haldar S, Wang M, Bhauriyal P, Hazra A, Khan AH, Bon V, Isaacs MA, De A, Shupletsov L, Boenke T, Grothe J, Heine T, Brunner E, Feng X, Dong R, Schneemann A, Kaskel S. J. Am. Chem. Soc. 2022; 144: 9101
  • 104 Speer ME, Kolek M, Jassoy JJ, Heine J, Winter M, Bieker PM, Esser B. Chem. Commun. 2015; 51: 15261
  • 105 Ren J, Wang X, Liu H, Hu Y, Zhang X, Masuda T. React. Funct. Polym. 2020; 146: 104365
  • 106 Wild A, Strumpf M, Häupler B, Hager MD, Schubert US. Adv. Energy Mater. 2017; 7: 1601415
  • 107 Kim J, Kim H, Lee S, Kwon G, Kang T, Park H, Tamwattana O, Ko Y, Lee D, Kang K. J. Mater. Chem. A 2021; 9: 14485
  • 108 Etkind SI, Lopez J, Zhu YG, Fang J.-H, Ong WJ, Shao-Horn Y, Swager TM. ACS Sustainable Chem. Eng. 2022; 10: 11739
  • 109 Burkhart C, Haberhauer G. Eur. J. Org. Chem. 2017; 1308
  • 110 Bancu M, Rai AK, Cheng P, Gilardi RD, Scott LT. Synlett 2004; 173
  • 111 Georghiou PE, Tran AH, Mizyed S, Bancu M, Scott LT. J. Org. Chem. 2005; 70: 6158
  • 112 Georghiou PE, Dawe LN, Tran HA, Strübe J, Neumann B, Stammler HG, Kuck D. J. Org. Chem. 2008; 73: 9040
  • 113 Etkind SI, Vander Griend DA, Swager TM. J. Org. Chem. 2020; 85: 10050
  • 114 Bisson AP, Lynch VM, Monahan M.-KC, Anslyn EV. Angew. Chem. Int. Ed. 1997; 36: 2340
  • 115 Arena A, Campagna S, Mezzasalma AM, Saija R, Saitta G. Nuovo Cimento Soc. Ital. Fis, D 1993; 15: 1521
  • 116 Liu H, Gao Y, Cao J, Li T, Wen Y, Ge Y, Zhang L, Pan G, Zhou T, Yang B. Mater. Chem. Front. 2018; 2: 1853
  • 117 Pander P, Swist A, Soloducho J, Dias FB. Dyes Pigm. 2017; 142: 315
  • 118 Świst A, Sołoducho J, Data P, Łapkowski M. ARKIVOC 2012; (iii): 193
  • 119 Pander P, Swist A, Turczyn R, Pouget S, Djurado D, Lazauskas A, Pashazadeh R, Grazulevicius JV, Motyka R, Klimash A, Skabara PJ, Data P, Soloducho J, Dias FB. J. Phys. Chem. C 2018; 122: 24958
  • 120 Wen Y, Liu H, Zhang S.-T, Pan G, Yang Z, Lu T, Li B, Cao J, Yang B. CCS Chem. 2021; 3: 1940
  • 121 Tomkeviciene A, Dabulienė A, Matulaitis T, Guzauskas M, Andruleviciene V, Grazulevicius JV, Yamanaka Y, Yano Y, Ono T. Dyes Pigm. 2019; 170: 107605
  • 122 Chen J, Tian H, Yang Z, Zhao J, Yang Z, Zhang Y, Aldred MP, Chi Z. Adv. Opt. Mater. 2021; 9: 2001550
  • 123 Friedrich R, Janietz S, Wedel A. Macromol. Chem. Phys. 1999; 200: 731
  • 124 Friedrich R, Janietz S, Wedel A. Macromol. Chem. Phys. 1999; 200: 739
  • 125 Barát V, Budanović M, Halilovic D, Huh J, Webster RD, Mahadevegowda SH, Stuparu MC. Chem. Commun. 2019; 55: 3113
  • 126 Nelson Z, Delage-Laurin L, Peeks MD, Swager TM. J. Am. Chem. Soc. 2021; 143: 7096
  • 127 Riebe S, Adam S, Roy B, Maisuls I, Daniliuc CG, Dubbert J, Strassert CA, Schapiro I, Voskuhl J. Chem. Asian J. 2021; 16: 2307
  • 128 Luo H, He D, Zhang Y, Wang S, Gao H, Yan J, Cao Y, Cai Z, Tan L, Wu S, Wang L, Liu Z. Org. Lett. 2019; 21: 9734
  • 129 Ogawa S, Muraoka H, Sato R. Tetrahedron Lett. 2006; 47: 2479
  • 130 Yuan J, Song Y, Li X, Xie J, Dong S, Zhu K. Org. Lett. 2021; 23: 9554
  • 131 Wang S, Yuan J, Xie J, Lu Z, Jiang L, Mu Y, Huo Y, Tsuchido Y, Zhu K. Angew. Chem. Int. Ed. 2021; 60: 18443
  • 132 Shi T.-H, Tong S, Wang M.-X. Angew. Chem. Int. Ed. 2020; 59: 7700